Expanding Beyond a Simple Derivative | Understanding PID Control, Part 3
From the series: Understanding PID Control
Brian Douglas
This video describes how to make an ideal PID controller more robust when controlling real systems that don’t behave like ideal linear models. Noise is generated by sensors and is present in every system. The derivative in an ideal PID controller amplifies high-frequency noise. Even if that noise is relatively low amplitude, the derivative will sense it and possibly amplify it enough to impact the controller. To protect against high-frequency noise impacting the system, you can modify the derivative path with a low pass filter to reduce the noise before it causes any problems.
Published: 9 Jul 2018
Related Products
Learn More
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)