comm.RicianChannel
Filter input signal through multipath Rician fading channel
Description
The comm.RicianChannel
System object™ filters an input signal through a multipath Rician fading channel. For more
information on fading model processing, see the Methodology for Simulating
Multipath Fading Channels section.
To filter an input signal through a multipath Rician fading channel:
Create the
comm.RicianChannel
object and set its properties.Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects?
Creation
Description
creates a
frequency-selective or frequency-flat multipath Rician fading channel System object. This
object filters a real or complex input signal through the multipath channel to obtain a
channel-impaired signal.ricianchan
= comm.RicianChannel
sets properties using one or more name-value arguments. For example,
ricianchan
= comm.RicianChannel(Name
=Value
)comm.RicianChannel(SampleRate=2)
sets the input signal sample rate to
2.
Properties
Usage
Syntax
Description
filters input signal Y
= ricianchan(X
)X
through a multipath Rician fading channel
and returns the result in Y
.
To enable this syntax, set the ChannelFiltering
property
to true
.
specifies a start time for the fading process.Y
= ricianchan(X
,inittime
)
To enable this syntax, set the FadingTechnique
property to
'Sum of sinusoids'
and the InitialTimeSource
property to 'Input port'
.
[
also returns the channel path gains of the underlying multipath Rician fading process in
Y
,pathgains
] = ricianchan(___)pathgains
using any of the input argument combinations in the
previous syntaxes.
To enable this syntax, set the PathGainsOutputPort
property to true
.
returns the
channel path gains of the underlying fading process. In this case, the channel requires
no input signal and acts as a source of path gains.pathgains
= ricianchan()
To enable this syntax, set the ChannelFiltering
property
to false
.
returns the channel path gains of the underlying fading process beginning at the
specified initial time. In this case, the channel requires no input signal and acts as a
source of path gains.pathgains
= ricianchan(inittime
)
To enable this syntax, set the FadingTechnique
property to
'Sum of sinusoids'
, the InitialTimeSource
property to 'Input port'
, and the ChannelFiltering
property
to false
.
Input Arguments
Output Arguments
Object Functions
To use an object function, specify the
System object as the first input argument. For
example, to release system resources of a System object named obj
, use
this syntax:
release(obj)
Examples
More About
References
[1] Oestges, Claude, and Bruno Clerckx., MIMO Wireless Communications: From Real-World Propagation to Space-Time Code Design. 1st ed. Boston, MA: Elsevier, 2007.
[2] Correia, Luis M., and European Cooperation in the Field of Scientific and Technical Research (Organization), eds. Mobile Broadband Multimedia Networks: Techniques, Models and Tools for 4G. 1st ed. Amsterdam; Boston: Elsevier/Academic Press, 2006.
[3] Kermoal, J.P., L. Schumacher, K.I. Pedersen, P.E. Mogensen, and F. Frederiksen. “A Stochastic MIMO Radio Channel Model with Experimental Validation.” IEEE® Journal on Selected Areas in Communications 20, no. 6 (August 2002): 1211–26. https://doi.org/10.1109/JSAC.2002.801223.
[4] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan. Simulation of Communication Systems. Second edition. Boston, MA: Springer US, 2000.
[5] Patzold, M., Cheng-Xiang Wang, and B. Hogstad. “Two New Sum-of-Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated Rayleigh Fading Waveforms.” IEEE Transactions on Wireless Communications 8, no. 6 (June 2009): 3122–31. https://doi.org/10.1109/TWC.2009.080769.