predict

Compute deep learning network output for inference

Description

Some deep learning layers behave differently during training and inference (prediction). For example, during training, dropout layers randomly set input elements to zero to help prevent overfitting, but during inference, dropout layers do not change the input.

To compute network outputs for inference, use the predict function. To compute network outputs for training, use the forward function. For prediction with SeriesNetwork and DAGNetwork objects, see predict.

example

dlY = predict(dlnet,dlX) computes the network output dlY during inference given the input data dlX.

[dlY1,...,dlYN] = predict(dlnet,dlX,'Outputs',layerNames) returns the outputs dlY1, …, dlYN for the specified layers.

[dlY1,...,dlYN,state] = predict(___) also returns the updated network state using any of the previous syntaxes.

Tip

For prediction with SeriesNetwork and DAGNetwork objects, see predict.

Examples

collapse all

This example shows how to make predictions using a dlnetwork object by splitting data into mini-batches.

For large data sets, or when predicting on hardware with limited memory, make predictions by splitting the data into mini-batches. When making predictions with SeriesNetwork or DAGNetwork objects, the predict function automatically splits the input data into mini-batches. For dlnetwork objects, you must split the data into mini-batches manually.

Load dlnetwork Object

Load a trained dlnetwork object and the corresponding classes.

s = load("digitsCustom.mat");
dlnet = s.dlnet;
classes = s.classes;

Load Data for Prediction

Load the digits data for prediction.

digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true);

Make Predictions

Loop over the mini-batches of the test data and make predictions using a custom prediction loop. To read a mini-batch of data from the datastore, set the ReadSize property to the mini-batch size.

For each mini-batch:

  • Convert the data to dlarray objects with underlying type single and specify the dimension labels 'SSCB' (spatial, spatial, channel, batch).

  • For GPU prediction, convert to gpuArray objects.

  • Make predictions using the predict function.

  • Determine the class labels by finding the maximum scores.

Specify the prediction options. Specify a mini-batch size of 128 and make predictions on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

miniBatchSize = 128;
executionEnvironment = "auto";

Set the read size property of the image datastore to the mini-batch size.

imds.ReadSize = miniBatchSize;

Make predictions by looping over the mini-batches of data.

numObservations = numel(imds.Files);
YPred = strings(1,numObservations);
i = 1;

% Loop over mini-batches.
while hasdata(imds)
    
    % Read mini-batch of data.
    data = read(imds);
    X = cat(4,data{:});
    
    % Normalize the images.
    X = single(X)/255;
    
    % Convert mini-batch of data to dlarray.
    dlX = dlarray(X,'SSCB');
    
    % If training on a GPU, then convert data to gpuArray.
    if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
        dlX = gpuArray(dlX);
    end
    
    % Make predictions using the predict function.
    dlYPred = predict(dlnet,dlX);
   
    % Determine corresponding classes.
    [~,idxTop] = max(extractdata(dlYPred),[],1);
    idxMiniBatch = i:min((i+miniBatchSize-1),numObservations);
    YPred(idxMiniBatch) = classes(idxTop);
    
    i = i + miniBatchSize;
end

Visualize some of the predictions.

idx = randperm(numObservations,9);
figure
for i = 1:9
    subplot(3,3,i)
    I = imread(imds.Files{idx(i)});
    label = YPred(idx(i));
    imshow(I)
    title("Label: " + label)
end

Input Arguments

collapse all

Network for custom training loops, specified as a dlnetwork object.

Input data, specified as a formatted dlarray. For more information about dlarray formats, see the fmt input argument of dlarray.

Layers to extract outputs from, specified as a string array or a cell array of character vectors containing the layer names.

  • If layerNames(i) corresponds to a layer with a single output, then layerNames(i) is the name of the layer.

  • If layerNames(i) corresponds to a layer with multiple outputs, then layerNames(i) is the layer name followed by the character "/" and the name of the layer output: 'layerName/outputName'.

Output Arguments

collapse all

Output data, returned as a formatted dlarray. For more information about dlarray formats, see the fmt input argument of dlarray.

Updated network state, returned as a table.

The network state is a table with three columns:

  • Layer – Layer name, specified as a string scalar.

  • Parameter – Parameter name, specified as a string scalar.

  • Value – Value of parameter, specified as a numeric array object.

The network state contains information remembered by the network between iterations. For example, the state of LSTM and batch normalization layers.

Update the state of a dlnetwork using the State property.

Introduced in R2019b