Estimate Efficient Frontiers for Portfolio Object
Whereas Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object focused on estimation of efficient
portfolios, this section focuses on the estimation of efficient frontiers. For
information on the workflow when using Portfolio
objects, see Portfolio Object Workflow.
Obtaining Portfolio Risks and Returns
This example shows how to calculate the risk and returns for a portfolio. Given any portfolio and, in particular, efficient portfolios, the functions estimatePortReturn
, estimatePortRisk
, and estimatePortMoments
provide estimates for the return (or return proxy), risk (or the risk proxy), and, in the case of mean-variance portfolio optimization, the moments of expected portfolio returns. Each function has the same input syntax but with different combinations of outputs. Suppose that you have this following portfolio optimization problem that gave you a collection of portfolios along the efficient frontier in pwgt
:
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = Portfolio('AssetMean', m, 'AssetCovar', C, 'InitPort', pwgt0); p = setDefaultConstraints(p); pwgt = estimateFrontier(p);
Given pwgt0
and pwg
t, use the portfolio risk and return estimation functions to obtain risks and returns for your initial portfolio and the portfolios on the efficient frontier.
[prsk0, pret0] = estimatePortMoments(p, pwgt0); [prsk, pret] = estimatePortMoments(p, pwgt); display(prsk0)
prsk0 = 0.1103
display(pret0)
pret0 = 0.0870
display(prsk)
prsk = 10×1
0.0769
0.0831
0.0994
0.1217
0.1474
0.1750
0.2068
0.2487
0.2968
0.3500
display(pret)
pret = 10×1
0.0590
0.0725
0.0859
0.0994
0.1128
0.1262
0.1397
0.1531
0.1666
0.1800
The returns and risks are at the periodicity of the moments of asset returns so that, if you have values for AssetMean
and AssetCovar
in terms of monthly returns, the estimates for portfolio risk and return are in terms of monthly returns as well. In addition, the estimate for portfolio risk in the mean-variance case is the standard deviation of portfolio returns, not the variance of portfolio returns.
See Also
Portfolio
| estimatePortReturn
| estimatePortMoments
| plotFrontier
Topics
- Plotting the Efficient Frontier for a Portfolio Object
- Creating the Portfolio Object
- Working with Portfolio Constraints Using Defaults
- Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object
- Postprocessing Results to Set Up Tradable Portfolios
- Asset Allocation Case Study
- Portfolio Optimization Examples Using Financial Toolbox
- Portfolio Optimization with Semicontinuous and Cardinality Constraints
- Black-Litterman Portfolio Optimization Using Financial Toolbox
- Portfolio Optimization Using Factor Models
- Portfolio Optimization Using Social Performance Measure
- Diversify Portfolios Using Custom Objective
- Portfolio Object
- Portfolio Optimization Theory
- Portfolio Object Workflow