Main Content

resonatorRing

Create gap-coupled ring resonator in microstrip form

Description

Use the resonatorRing object to create a gap-coupled ring resonator in the microstrip form. Resonant structures such as rectangular, circular, and ring resonators are used in oscillators and filters.

Creation

Description

example

resonator = resonatorRing creates a default gap-coupled ring resonator. The default properties of the ring resonator are for a design frequency of 1 GHz.

example

resonator = resonatorRing(Name=Value) sets Properties using one or more name-value arguments. For example, resonatorRing(RingWidth=0.045) creates a ring resonator with a ring width of 0.045 meters. Properties not specified retain their default values

Properties

expand all

Length of the port line in meters, specified as a positive scalar.

Example: resonator = resonatorRing(PortLineLength=0.045)

Data Types: double

Width of the port line in meters, specified as a positive scalar.

Example: resonator = resonatorRing(PortLineWidth=0.0061)

Data Types: double

Gap between the port lines and the ring in meters, specified as a positive scalar.

Example: resonator = resonatorRing(CouplingGap=0.002)

Data Types: double

Outer radius of the ring in meters, specified as a positive scalar.

Example: resonator = resonatorRing(RingRadiusOuter=0.0481)

Data Types: double

Width of the ring in meters, specified as a positive scalar.

Example: resonator = resonatorRing(RingWidth=0.0061)

Data Types: double

Height of the resonator from the ground plane in meters, specified as a positive scalar. In the case of a multilayer substrate, you can use the Height property to create a resonator where the two dielectrics interface.

Example: resonator = resonatorRing(Height=0.020)

Data Types: double

Width of the ground plane in meters, specified as a positive scalar.

Example: resonator = resonatorRing(GroundPlaneWidth=0.2241)

Data Types: double

Type of dielectric material used as a substrate, specified as a dielectric object. The thickness of the default dielectric material Teflon is 0.0016 m or the same value as the Height property.

Example: d = dielectric("FR4"); resonator = resonatorRing(Substrate=d)

Type of metal used in the conducting layers, specified as a metal object.

Example: m = metal("Copper"); resonator = resonatorRing(Conductor=m)

Object Functions

chargeCalculate and plot charge distribution
currentCalculate and plot current distribution
designDesign ring resonator around specified frequency
feedCurrentCalculate current at feed port
getZ0Calculate characteristic impedance of transmission line
layoutPlot all metal layers and board shape
meshChange and view mesh properties of metal or dielectric in PCB component
shapesExtract all metal layer shapes of PCB component
showDisplay PCB component structure or PCB shape
sparametersCalculate S-parameters for RF PCB objects

Examples

collapse all

Create a default ring resonator.

resonator = resonatorRing
resonator = 
  resonatorRing with properties:

      PortLineLength: 0.0100
       PortLineWidth: 0.0050
         CouplingGap: 1.0000e-03
     RingRadiusOuter: 0.0100
           RingWidth: 0.0040
              Height: 0.0016
    GroundPlaneWidth: 0.0400
           Substrate: [1x1 dielectric]
           Conductor: [1x1 metal]

Visualize the resonator.

show(resonator)

Figure contains an axes object. The axes object with title resonatorRing element contains 6 objects of type patch, surface. These objects represent PEC, feed, Teflon.

Create a ring resonator at the interface of a multilayer dielectric.

resonator = resonatorRing;
resonator.Substrate = dielectric(Name={'Teflon','Teflon'},EpsilonR=[2.1 2.1],...
    LossTangent=[0 0],Thickness=[0.8e-3 0.8e-3]);
resonator.Height = 0.8e-3;

Visualize the ring resonator.

show(resonator)

Figure contains an axes object. The axes object with title resonatorRing element contains 7 objects of type patch, surface. These objects represent PEC, feed, Teflon.

References

[1] Pozar, David.M. Microwave Engineering Singapore; JohnWiley and Sons. Inc, 2012.

[2] Bogner, Andreas, Carsten Steiner, Stefanie Walter, Jaroslaw Kita, Gunter Hagen, and Ralf Moos. Planar Microstrip ring resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing.

[3] Bernard, P.A., and J.M. Gautray. “Measurement of Dielectric Constant Using a Microstrip Ring Resonator.” IEEE Transactions on Microwave Theory and Techniques 39, no. 3 (March 1991): 592–95.

Version History

Introduced in R2022b