Transmission Line

Model transmission line

  • Library:
  • RF Blockset / Circuit Envelope / Elements

Description

Use the Transmission Line block to model delayed-based, lumped, and distributed transmission lines. Mask dialog box options change automatically to accommodate model type selection.

Parameters

expand all

Main

Model type of the transmission line, specified as one of the following:

  • Delay-based and lossless – transmission line is delay-based but no loss.

  • Delay-based and lossy – transmission line is delay-based and there is loss.

  • Lumped parameter L-section – transmission line as a number of RLGC L-sections.

  • Lumped parameter Pi-section – transmission line as a number of RLGC pi-sections.

  • Coaxial – transmission line as a coaxial transmission line. A coaxial transmission line is shown in cross-section in the following figure. Its physical characteristics include the radius of the inner conductor, a, and the radius of the outer conductor b.

  • Coplanar waveguide – transmission line as a coplanar waveguide. A coplanar waveguide transmission line is shown in cross-section in the following figure. Its physical characteristics include the conductor width, w, the conductor thickness, t, the slot width, s, the substrate height, d, and the relative permittivity constant, ε.

  • Microstrip – transmission line as a microstrip transmission line. A microstrip transmission line is shown in cross-section in the following figure. Its physical characteristics include the microstrip width, w, the microstrip thickness, t, the substrate height, d, and the relative permittivity constant, ε.

  • Two-wire – transmission line as two-wire transmission line. A two-wire transmission line is shown in cross-section in the following figure. Its physical characteristics include the radius of the wires, a, the separation or physical distance between the wire centers, S, and the relative permittivity and permeability of the wires References. RF Blockset™ Equivalent Baseband software assumes the relative permittivity and permeability are uniform.

  • Parallel plate

    transmission line as a parallel-plate transmission line. A parallel-plate transmission line is shown in cross-section in the following figure. Its physical characteristics include the plate width, w, and the plate separation, d. References.

  • Equation based

    transmission line as an equation-based transmission line. The transmission line, which can be lossy or lossless, is treated as a two-port linear network.

  • RLCG

    transmission line as an RLCG transmission line. This line is described in the block dialog box in terms of its frequency-dependent resistance, inductance, capacitance, and conductance. The transmission line, which can be lossy or lossless, is treated as a two-port linear network.

Delay in the transmission line, specified as a real scalar in s, milliseconds, microseconds, or nanoseconds.

To enable this parameter, choose one of the following:

  • Delay-based and lossless in Model type.

  • Delay-based and lossy in Model type.

Impedance of the transmission line, specified as a real scalar in Ohm, kOhm, MOhm, or GOhm.

Dependencies

To enable this parameter, choose one of the following:

  • Delay-based and lossless, Delay-based and lossy, or Equation-based in Model type.

  • Lumped parameter L-section or Lumped parameter Pi-section in Model type and By characterisitc impedance and capacitance in Parameterization.

Resistance per unit length of the transmission line, specified as a positive scalar in Ohm/m, kOhm/m, MOhm/m, or GOhm/m.

Dependencies

To enable this parameter, choose one of the following:

  • Delay-based and lossy or RLCG in Model type.

  • Lumped parameter L-section or Lumped parameter Pi-section in Model type and By characterisitc impedance and capacitance in Parameterization.

Physical length of the transmission line or l, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose one of the following:

  • Delay-based and lossy, Coaxial, Coplanar waveguide, Microstrip, or Two-wire, Parallel-plate, Equation-based, or RLCG in Model type.

  • Lumped parameter L-section or Lumped parameter Pi-section in Model type and By characterisitc impedance and capacitance or By inductance and capacitance in Parameterization.

Number of segments in the transmission line, specified as a positive scalar.

Dependencies

To enable this parameter, choose one of the following:

  • Delay-based and lossy in Model type.

  • Lumped parameter L-section or Lumped parameter Pi-section in Model type and By characterisitc impedance and capacitance or By inductance and capacitance in Parameterization.

Type of parameters to model segments in transmission line, specified as By characterisitc impedance and capacitance or By inductance and capacitance.

Dependencies

To enable this parameter, select Lumped parameter L-section or Lumped parameter Pi-section in Model type.

Capacitance per unit length of the transmission line, specified as a positive scalar in F/m, mF/m, uF/m, nF/m, or pF/m.

Dependencies

To enable this parameter, choose Lumped parameter L-section, Lumped parameter Pi-section, or RLCG in Model type.

Conductance per unit length of the transmission line, specified as a positive scalar in S/m, mS/m, uS/m, or nS/m.

Dependencies

To enable this parameter, choose Lumped parameter L-section, Lumped parameter Pi-section, or RLCG in Model type.

Inductance per unit length of the transmission line, specified as a positive scalar in H/m, mH/m, uH/m, or nH/m.

Dependencies

To enable this parameter, choose one of the following:

  • Lumped parameter L-section, or Lumped parameter Pi-section in Model type and By inductance and capacitance in Parameterization.

  • RLCG in Model type

Outer radius of coaxial transmission line, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Coaxial in Model type.

Inner radius of coaxial transmission line, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Coaxial in Model type.

Relative permeability of the dielectric, specified as a scalar.

Dependencies

To enable this parameter, choose Coaxial, Two-wire, or Parallel-plate in Model type.

Relative permittivity of the dielectric, specified as a scalar.

Dependencies

To enable this parameter, choose Coaxial, Coplanar waveguide, Microstrip, Two-wire, or Parallel-plate in Model type.

Loss angle tangent of the dielectric, specified as a scalar.

Dependencies

To enable this parameter, choose Coaxial, Coplanar waveguide, Microstrip, Two-wire, or Parallel-plate in Model type.

Conductivity of conductor, specified as a scalar in S/m, mS/m, uS/m, or nS/m.

Dependencies

To enable this parameter, choose Coaxial, Coplanar waveguide, Microstrip, Two-wire or Parallel-plate in Model type.

Type of stub, specified as Not a stub, Shunt, or Series. See Parameter Calculations for Transmission Line with Stub.

Dependencies

To enable this parameter, choose Coaxial, Coplanar waveguide, Microstrip Two-wire, Parallel-plate, Equation-based, or RLCG in Model type.

Type of termination for stub, specified as Open or Short.

Dependencies

To enable this parameter, choose Series or Shunt in Stub mode.

Physical width of the conductor, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Coplanar waveguide in Model type.

Physical width of the slot, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Coplanar waveguide in Model type.

Thickness of the dielectric on which the conductor resides, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Coplanar waveguide or Microstrip in Model type.

Physical thickness of the conductor, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Coplanar waveguide or Microstrip in Model type.

Width of microstrip transmission line, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Microstrip in Model type.

Radius of the conducting wires of the two-wire transmission line, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Two-wire in Model type.

Physical distance between the conducting wires of the two-wire transmission line, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Two-wire in Model type.

Width of the parallel-plate transmission line, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Parallel-plate in Model type.

Thickness of the dielectric separating the plates, specified as a positive scalar in m, cm, mm, um, in, or ft.

Dependencies

To enable this parameter, choose Parallel-plate in Model type.

Propagation velocity of a uniform plane wave on the transmission line, specified as a positive scalar in meters per second

Dependencies

To enable this parameter, choose Equation-based in Model type.

Reduction in strength of the signal as it travels over the transmission line, specified as a positive scalar in meters per second

Dependencies

To enable this parameter, choose Equation-based in Model type.

Modeling frequencies, specified as a positive scalar or vector in Hz, kHz, MHz, or GHz.

Dependencies

To enable this parameter, choose Equation-based or RLCG in Model type.

Interpolation method used to calculate the values at the modeling frequencies, specified as Linear, Spline, or Cubic.

Dependencies

To enable this parameter, choose Equation-based or RLCG in Model type.

Select this parameter to internally ground and hide the negative terminals. To expose the negative terminals, clear this parameter. By exposing these terminals, you can connect them to other parts of your model.

By default, this option is selected.

Note

Modeling options tab is activated for all transmission line options except Delay-based and lossless, Delay-based and lossy, Lumped parameter L-section, and Lumped parameter pi-section.

Modeling

Options to model S-parameters, specified as:

  • Frequency domain – Computes the baseband impulse response for each carrier frequency independently. This technique is based on convolution. There is an option to specify the duration of the impulse response. For more information, see Compare Time and Frequency Domain Simulation Options for S-parameters.

  • Time domain (rationalfit) – Computes the analytical rational model that approximates the whole range of the data.

For the Amplifier and S-parameters blocks, the default value is Time domain (rationalfit). For the Transmission Line block, the default value is Frequency domain.

Select Automatically estimate impulse response duration to calculate impulse response duration automatically. Clear the selection to specify impulse response duration.

Dependencies

To enable this parameter, choose Frequency domain in Modeling options.

Manually specify impulse response duration, specified as a positive scalar in s, ms, us, or ns.

Dependencies

To enable this parameter, clear Automatically estimate impulse response duration.

Fitting options for rationalfit, specified as Share all poles, Share poles by columns, or Fit individually.

For the Amplifier block, the default value is Fit individually. For the S-parameters block and Transmission Line block, the default value is Share all poles.

Dependencies

To enable this parameter, choose Time domain (rationalfit) in Modeling options.

Relative error acceptable in rationalfit output, specified as a real scalar in decibels.

Dependencies

To enable this parameter, choose Time domain (rationalfit) in Modeling options.

Shows values of Number of independent fits, Number of required poles, and Relative error achieved (dB).

When modeling using Time domain, the Plot in Visualization tab plots the data defined in Data Source and the values in the rationalfit function.

Dependencies

To enable this parameter, choose Time domain (rationalfit) in Modeling options.

More About

expand all

Tips

  • In general, blocks that model delay effects rely on signal history. You can minimize numerical error that occur due to a lack of signal history at the start of a simulation. To do so, in the Configuration Parameters dialog box Solver pane you can specify an Initial step size. For models with delay-based Transmission Line blocks, use an initial step size that is less than the value of the Delay parameter.

References

[1] Sussman-Fort, S. E., and J. C. Hantgan. “SPICE Implementation of Lossy Transmission Line and Schottky Diode Models.” IEEE Transactions on Microwave Theory and Techniques.Vol. 36, No.1, January 1988.

[2] Pozar, David M. Microwave Engineering. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

[3] Gupta, K. C., Ramesh Garg, Inder Bahl, and Prakash Bhartia. Microstrip Lines and Slotlines, 2nd Edition, Norwood, MA: Artech House, Inc., 1996.

[4] Ludwig, Reinhold and Pavel Bretchko. RF Circuit Design: Theory and Applications. Englewood Cliffs: NJ: Prentice-Hall, 2000.

[5] True, Kenneth M. “Data Transmission Lines and Their Characteristics.” National Semiconductor Application Note 806, April 1992.

Introduced in R2012a