Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

**MathWorks Machine Translation**

The automated translation of this page is provided by a general purpose third party translator tool.

MathWorks does not warrant, and disclaims all liability for, the accuracy, suitability, or fitness for purpose of the translation.

Classification loss for multiclass error-correcting output codes (ECOC) model

`L = loss(Mdl,tbl,ResponseVarName)`

`L = loss(Mdl,tbl,Y)`

`L = loss(Mdl,X,Y)`

`L = loss(___,Name,Value)`

returns the classification loss (`L`

= loss(`Mdl`

,`tbl`

,`ResponseVarName`

)`L`

), a scalar representing how well
the trained multiclass error-correcting output codes (ECOC) model `Mdl`

classifies the predictor data in `tbl`

compared to the true class
labels in `tbl.ResponseVarName`

. By default, `loss`

uses the classification error to compute
`L`

.

specifies options using one or more name-value pair arguments in addition to any of the
input argument combinations in previous syntaxes. For example, you can specify a decoding
scheme, classification loss function, and verbosity level.`L`

= loss(___,`Name,Value`

)

Load Fisher's iris data set. Specify the predictor data `X`

, the response data `Y`

, and the order of the classes in `Y`

.

load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); % Class order rng(1); % For reproducibility

Train an ECOC model using SVM binary classifiers. Specify a 15% holdout sample, standardize the predictors using an SVM template, and specify the class order.

t = templateSVM('Standardize',true); PMdl = fitcecoc(X,Y,'Holdout',0.15,'Learners',t,'ClassNames',classOrder); Mdl = PMdl.Trained{1}; % Extract trained, compact classifier

`PMdl`

is a `ClassificationPartitionedECOC`

model. It has the property `Trained`

, a 1-by-1 cell array containing the `CompactClassificationECOC`

model that the software trained using the training set.

Estimate the test-sample classification error, which is the default classification loss.

```
testInds = test(PMdl.Partition); % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);
L = loss(Mdl,XTest,YTest)
```

L = 0

The ECOC model correctly classifies all irises in the test sample.

Determine the quality of an ECOC model by using a custom loss function that considers the minimal binary loss for each observation.

Load Fisher's iris data set. Specify the predictor data `X`

, the response data `Y`

, and the order of the classes in `Y`

.

load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); % Class order rng(1) % For reproducibility

Train an ECOC model using SVM binary classifiers. Specify a 15% holdout sample, standardize the predictors using an SVM template, and define the class order.

t = templateSVM('Standardize',true); PMdl = fitcecoc(X,Y,'Holdout',0.15,'Learners',t,'ClassNames',classOrder); Mdl = PMdl.Trained{1}; % Extract trained, compact classifier

`PMdl`

is a `ClassificationPartitionedECOC`

model. It has the property `Trained`

, a 1-by-1 cell array containing the `CompactClassificationECOC`

model that the software trained using the training set.

Create a function that takes the minimal loss for each observation, then averages the minimal losses for all observations. `S`

corresponds to the `NegLoss`

output of `predict`

.

lossfun = @(~,S,~,~)mean(min(-S,[],2));

Compute the test-sample custom loss.

testInds = test(PMdl.Partition); % Extract the test indices XTest = X(testInds,:); YTest = Y(testInds,:); loss(Mdl,XTest,YTest,'LossFun',lossfun)

ans = 0.0033

The average minimal binary loss for the test-sample observations is `0.0033`

.

`Mdl`

— Full or compact multiclass ECOC model`ClassificationECOC`

model object | `CompactClassificationECOC`

model
objectFull or compact multiclass ECOC model, specified as a
`ClassificationECOC`

or
`CompactClassificationECOC`

model
object.

To create a full or compact ECOC model, see `ClassificationECOC`

or `CompactClassificationECOC`

.

`tbl`

— Sample datatable

Sample data, specified as a table. Each row of `tbl`

corresponds to one
observation, and each column corresponds to one predictor variable. Optionally,
`tbl`

can contain additional columns for the response variable
and observation weights. `tbl`

must contain all the predictors used
to train `Mdl`

. Multicolumn variables and cell arrays other than cell
arrays of character vectors are not allowed.

If you train `Mdl`

using sample data contained in a
`table`

, then the input data for `loss`

must also be in a table.

If `Mdl.BinaryLearners`

contains linear or kernel classification
models (`ClassificationLinear`

or `ClassificationKernel`

model objects), then you cannot specify sample
data in a `table`

. Instead, pass a matrix (`X`

)
and class labels (`Y`

).

When training `Mdl`

, assume that you set
`'Standardize',true`

for a template object specified in the
`'Learners'`

name-value pair argument of `fitcecoc`

. In
this case, for the corresponding binary learner `j`

, the software standardizes
the columns of the new predictor data using the corresponding means in
`Mdl.BinaryLearner{j}.Mu`

and standard deviations in
`Mdl.BinaryLearner{j}.Sigma`

.

**Data Types: **`table`

`ResponseVarName`

— Response variable namename of variable in

`tbl`

Response variable name, specified as the name of a variable in `tbl`

. If
`tbl`

contains the response variable used to train
`Mdl`

, then you do not need to specify
`ResponseVarName`

.

If you specify `ResponseVarName`

, then you must do so as a character vector
or string scalar. For example, if the response variable is stored as
`tbl.y`

, then specify `ResponseVarName`

as
`'y'`

. Otherwise, the software treats all columns of
`tbl`

, including `tbl.y`

, as predictors.

The response variable must be a categorical, character, or string array, a logical or numeric vector, or a cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

**Data Types: **`char`

| `string`

`X`

— Predictor datanumeric matrix

Predictor data, specified as a numeric matrix.

Each row of `X`

corresponds to one observation, and each column corresponds
to one variable. The variables in the columns of
`X`

must be the same as the
variables that trained the classifier
`Mdl`

.

The number of rows in `X`

must equal the number of rows in
`Y`

.

When training `Mdl`

, assume that you set
`'Standardize',true`

for a template object specified in the
`'Learners'`

name-value pair argument of `fitcecoc`

. In
this case, for the corresponding binary learner `j`

, the software standardizes
the columns of the new predictor data using the corresponding means in
`Mdl.BinaryLearner{j}.Mu`

and standard deviations in
`Mdl.BinaryLearner{j}.Sigma`

.

**Data Types: **`double`

| `single`

`Y`

— Class labelscategorical array | character array | string array | logical vector | numeric vector | cell array of character vectors

Class labels, specified as a categorical, character, or string array, a logical or numeric
vector, or a cell array of character vectors. `Y`

must have the same
data type as `Mdl.ClassNames`

. (The software treats string arrays as cell arrays of character
vectors.)

The number of rows in `Y`

must equal the number of rows in
`tbl`

or `X`

.

**Data Types: **`categorical`

| `char`

| `string`

| `logical`

| `single`

| `double`

| `cell`

Specify optional
comma-separated pairs of `Name,Value`

arguments. `Name`

is
the argument name and `Value`

is the corresponding value.
`Name`

must appear inside quotes. You can specify several name and value
pair arguments in any order as
`Name1,Value1,...,NameN,ValueN`

.

`loss(Mdl,X,Y,'BinaryLoss','hinge','LossFun',@lossfun)`

specifies `'hinge'`

as the binary learner loss function and the custom
function handle `@lossfun`

as the overall loss function.`'BinaryLoss'`

— Binary learner loss function`'hamming'`

| `'linear'`

| `'logit'`

| `'exponential'`

| `'binodeviance'`

| `'hinge'`

| `'quadratic'`

| function handleBinary learner loss function, specified as the comma-separated pair consisting of
`'BinaryLoss'`

and a built-in loss function name or function handle.

This table describes the built-in functions, where

*y*is a class label for a particular binary learner (in the set {–1,1,0}),_{j}*s*is the score for observation_{j}*j*, and*g*(*y*,_{j}*s*) is the binary loss formula._{j}Value Description Score Domain *g*(*y*,_{j}*s*)_{j}`'binodeviance'`

Binomial deviance (–∞,∞) log[1 + exp(–2 *y*)]/[2log(2)]_{j}s_{j}`'exponential'`

Exponential (–∞,∞) exp(– *y*)/2_{j}s_{j}`'hamming'`

Hamming [0,1] or (–∞,∞) [1 – sign( *y*)]/2_{j}s_{j}`'hinge'`

Hinge (–∞,∞) max(0,1 – *y*)/2_{j}s_{j}`'linear'`

Linear (–∞,∞) (1 – *y*)/2_{j}s_{j}`'logit'`

Logistic (–∞,∞) log[1 + exp(– *y*)]/[2log(2)]_{j}s_{j}`'quadratic'`

Quadratic [0,1] [1 – *y*(2_{j}*s*– 1)]_{j}^{2}/2The software normalizes binary losses so that the loss is 0.5 when

*y*= 0. Also, the software calculates the mean binary loss for each class._{j}For a custom binary loss function, for example

`customFunction`

, specify its function handle`'BinaryLoss',@customFunction`

.`customFunction`

has this form:where:bLoss = customFunction(M,s)

`M`

is the*K*-by-*L*coding matrix stored in`Mdl.CodingMatrix`

.`s`

is the 1-by-*L*row vector of classification scores.`bLoss`

is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.*K*is the number of classes.*L*is the number of binary learners.

For an example of passing a custom binary loss function, see Predict Test-Sample Labels of ECOC Model Using Custom Binary Loss Function.

The default `BinaryLoss`

value depends on the score ranges returned
by the binary learners. This table describes some default
`BinaryLoss`

values based on the given assumptions.

Assumption | Default Value |
---|---|

All binary learners are SVMs or either linear or kernel classification models of SVM learners. | `'hinge'` |

All binary learners are ensembles trained by
`AdaboostM1` or
`GentleBoost` . | `'exponential'` |

All binary learners are ensembles trained by
`LogitBoost` . | `'binodeviance'` |

All binary learners are linear or kernel classification models of
logistic regression learners. Or, you specify to predict class
posterior probabilities by setting
`'FitPosterior',true` in `fitcecoc` . | `'quadratic'` |

To check the default value, use dot notation to display the
`BinaryLoss`

property of the trained model at the command
line.

**Example: **`'BinaryLoss','binodeviance'`

**Data Types: **`char`

| `string`

| `function_handle`

`'Decoding'`

— Decoding scheme`'lossweighted'`

(default) | `'lossbased'`

Decoding scheme that aggregates the binary losses, specified as the comma-separated pair
consisting of `'Decoding'`

and `'lossweighted'`

or
`'lossbased'`

. For more information, see Binary Loss.

**Example: **`'Decoding','lossbased'`

`'LossFun'`

— Loss function`'classiferror'`

(default) | function handleLoss function, specified as the comma-separated pair consisting of
`'LossFun'`

and `'classiferror'`

or a function
handle.

Specify the built-in function

`'classiferror'`

. In this case, the loss function is the classification error, which is the proportion of misclassified observations.Or, specify your own function using function handle notation.

Assume that

`n = size(X,1)`

is the sample size and`K`

is the number of classes. Your function must have the signature`lossvalue = lossfun(C,S,W,Cost)`

, where:The output argument

`lossvalue`

is a scalar.You specify the function name (

).`lossfun`

`C`

is an`n`

-by-`K`

logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in`Mdl.ClassNames`

.Construct

`C`

by setting`C(p,q) = 1`

if observation`p`

is in class`q`

, for each row. Set all other elements of row`p`

to`0`

.`S`

is an`n`

-by-`K`

numeric matrix of negated loss values for the classes. Each row corresponds to an observation. The column order corresponds to the class order in`Mdl.ClassNames`

. The input`S`

resembles the output argument`NegLoss`

of`predict`

.`W`

is an`n`

-by-1 numeric vector of observation weights. If you pass`W`

, the software normalizes its elements to sum to`1`

.`Cost`

is a`K`

-by-`K`

numeric matrix of misclassification costs. For example,`Cost = ones(K) – eye(K)`

specifies a cost of 0 for correct classification and 1 for misclassification.

Specify your function using

`'LossFun',@lossfun`

.

**Data Types: **`char`

| `string`

| `function_handle`

`'ObservationsIn'`

— Predictor data observation dimension`'rows'`

(default) | `'columns'`

Predictor data observation dimension, specified as the comma-separated pair consisting of
`'ObservationsIn'`

and `'columns'`

or
`'rows'`

. `Mdl.BinaryLearners`

must contain
`ClassificationLinear`

models.

If you orient your predictor matrix so that observations correspond
to columns and specify `'ObservationsIn','columns'`

,
you can experience a significant reduction in execution time.

`'Options'`

— Estimation options`[]`

(default) | structure array returned by `statset`

Estimation options, specified as the comma-separated pair consisting
of `'Options'`

and a structure array returned by `statset`

.

To invoke parallel computing:

You need a Parallel Computing Toolbox™ license.

Specify

`'Options',statset('UseParallel',true)`

.

`'Verbose'`

— Verbosity level`0`

(default) | `1`

Verbosity level, specified as the comma-separated pair consisting of
`'Verbose'`

and `0`

or `1`

.
`Verbose`

controls the number of diagnostic messages that the
software displays in the Command Window.

If `Verbose`

is `0`

, then the software does not display
diagnostic messages. Otherwise, the software displays diagnostic messages.

**Example: **`'Verbose',1`

**Data Types: **`single`

| `double`

`'Weights'`

— Observation weights`ones(size(X,1),1)`

(default) | numeric vector | name of variable in `tbl`

Observation weights, specified as the comma-separated pair consisting of
`'Weights'`

and a numeric vector or the name of a variable in
`tbl`

. If you supply weights, then `loss`

computes the weighted loss.

If you specify `Weights`

as a numeric vector, then the size of
`Weights`

must be equal to the number of rows in
`X`

or `tbl`

.

If you specify `Weights`

as the name of a variable in
`tbl`

, you must do so as a character vector or string scalar. For
example, if the weights are stored as `tbl.w`

, then specify
`Weights`

as `'w'`

. Otherwise, the software
treats all columns of `tbl`

, including `tbl.w`

,
as predictors.

If you do not specify your own loss function (using `LossFun`

),
then the software normalizes `Weights`

to sum up to the value of
the prior probability in the respective class.

**Data Types: **`single`

| `double`

| `char`

| `string`

`L`

— Classification lossnumeric scalar | numeric row vector

Classification loss, returned as a numeric scalar or row vector.
`L`

is a generalization or resubstitution quality measure. Its
interpretation depends on the loss function and weighting scheme, but in general, better
classifiers yield smaller classification loss values.

If `Mdl.BinaryLearners`

contains `ClassificationLinear`

models, then `L`

is a
1-by-*ℓ* vector, where *ℓ* is the number of
regularization strengths in the linear classification models
(`numel(Mdl.BinaryLearners{1}.Lambda)`

). The value
`L(j)`

is the loss for the model trained using regularization
strength `Mdl.BinaryLearners{1}.Lambda(j)`

.

Otherwise, `L`

is a scalar value.

The *classification error* is
a binary classification error measure that has the form

$$L=\frac{{\displaystyle \sum _{j=1}^{n}{w}_{j}{e}_{j}}}{{\displaystyle \sum _{j=1}^{n}{w}_{j}}},$$

where:

*w*is the weight for observation_{j}*j*. The software renormalizes the weights to sum to 1.*e*= 1 if the predicted class of observation_{j}*j*differs from its true class, and 0 otherwise.

In other words, the classification error is the proportion of observations misclassified by the classifier.

A *binary loss* is a function
of the class and classification score that determines how well a binary
learner classifies an observation into the class.

Suppose the following:

*m*is element (_{kj}*k*,*j*) of the coding design matrix*M*(that is, the code corresponding to class*k*of binary learner*j*).*s*is the score of binary learner_{j}*j*for an observation.*g*is the binary loss function.$$\widehat{k}$$ is the predicted class for the observation.

In *loss-based decoding*
[Escalera et al.], the class producing the minimum sum of the binary losses over
binary learners determines the predicted class of an observation, that is,

$$\widehat{k}=\underset{k}{\text{argmin}}{\displaystyle \sum _{j=1}^{L}\left|{m}_{kj}\right|g}({m}_{kj},{s}_{j}).$$

In *loss-weighted decoding*
[Escalera et al.], the class producing the minimum average of the binary losses
over binary learners determines the predicted class of an observation, that is,

$$\widehat{k}=\underset{k}{\text{argmin}}\frac{{\displaystyle \sum _{j=1}^{L}\left|{m}_{kj}\right|g}({m}_{kj},{s}_{j})}{{\displaystyle \sum}_{j=1}^{L}\left|{m}_{kj}\right|}.$$

Allwein et al. suggest that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.

This table summarizes the supported loss functions, where
*y _{j}* is a class label for a particular binary
learner (in the set {–1,1,0}),

Value | Description | Score Domain | g(y,_{j}s)_{j} |
---|---|---|---|

`'binodeviance'` | Binomial deviance | (–∞,∞) | log[1 +
exp(–2y)]/[2log(2)]_{j}s_{j} |

`'exponential'` | Exponential | (–∞,∞) | exp(–y)/2_{j}s_{j} |

`'hamming'` | Hamming | [0,1] or (–∞,∞) | [1 – sign(y)]/2_{j}s_{j} |

`'hinge'` | Hinge | (–∞,∞) | max(0,1 – y)/2_{j}s_{j} |

`'linear'` | Linear | (–∞,∞) | (1 – y)/2_{j}s_{j} |

`'logit'` | Logistic | (–∞,∞) | log[1 +
exp(–y)]/[2log(2)]_{j}s_{j} |

`'quadratic'` | Quadratic | [0,1] | [1 – y(2_{j}s –
1)]_{j}^{2}/2 |

The software normalizes binary losses such that the loss is 0.5 when
*y _{j}* = 0, and aggregates using the average
of the binary learners [Allwein et al.].

Do not confuse the binary loss with the overall classification loss (specified by the
`'LossFun'`

name-value pair argument of the `loss`

and
`predict`

object functions), which measures how well an ECOC classifier
performs as a whole.

[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing
multiclass to binary: A unifying approach for margin classiﬁers.” *Journal of
Machine Learning Research*. Vol. 1, 2000, pp. 113–141.

[2] Escalera, S., O. Pujol, and P. Radeva. “On the decoding
process in ternary error-correcting output codes.” *IEEE Transactions on
Pattern Analysis and Machine Intelligence*. Vol. 32, Issue 7, 2010, pp.
120–134.

[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of
ternary codes for sparse designs of error-correcting output codes.” *Pattern
Recogn*. Vol. 30, Issue 3, 2009, pp. 285–297.

Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see Tall Arrays (MATLAB).

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the `'UseParallel'`

option to `true`

.

Set the `'UseParallel'`

field of the options structure to `true`

using `statset`

and specify the `'Options'`

name-value pair argument in the call to this function.

For example: `'Options',statset('UseParallel',true)`

For more information, see the `'Options'`

name-value pair argument.

For more general information about parallel computing, see Run MATLAB Functions with Automatic Parallel Support (Parallel Computing Toolbox).

`ClassificationECOC`

| `CompactClassificationECOC`

| `fitcecoc`

| `predict`

| `resubLoss`

You clicked a link that corresponds to this MATLAB command:

Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web siteYou can also select a web site from the following list:

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

- América Latina (Español)
- Canada (English)
- United States (English)

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)