This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.


Noncentral chi-square cumulative distribution function


p = ncx2cdf(x,v,delta)
p = ncx2cdf(x,v,delta,'upper')


p = ncx2cdf(x,v,delta) computes the noncentral chi-square cdf at each value in x using the corresponding degrees of freedom in v and positive noncentrality parameters in delta. x, v, and delta can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of p. A scalar input for x, v, or delta is expanded to a constant array with the same dimensions as the other inputs.

p = ncx2cdf(x,v,delta,'upper') returns the complement of the noncentral chi-square cdf at each value in x, using an algorithm that more accurately computes the extreme upper tail probabilities.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is



collapse all

Compare the noncentral chi-square cdf with DELTA = 2 to the chi-square cdf with the same number of degrees of freedom (4):

x = (0:0.1:10)';
ncx2 = ncx2cdf(x,4,2);
chi2 = chi2cdf(x,4);

hold on


[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley & Sons, Inc., 1970, pp. 130–148.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced before R2006a