This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.


Box regression layer for Fast and Faster R-CNN


A box regression layer refines bounding box locations by using a smooth L1 loss function. Use this layer to create a Fast or Faster R-CNN object detection network.



layer = rcnnBoxRegressionLayer
layer = rcnnBoxRegressionLayer('Name',Name)


layer = rcnnBoxRegressionLayer creates a box regression layer for a Fast or Faster R-CNN object detection network.


layer = rcnnBoxRegressionLayer('Name',Name) creates a box regression layer and sets the optional Name property.


expand all

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with this layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string


collapse all

Create an R-CNN box regression layer with the name 'rcnn_box_reg'.

rcnnBoxRegression = rcnnBoxRegressionLayer('Name','rcnn_box_reg');

Introduced in R2018b