Applying the Nonlinear Least Squares Method to Minimize the Objective Function to Find the Parameters of the Equation
3 views (last 30 days)
Show older comments
The liquid-liquid equilibrium data were fitted using the NRTL equation. The equation parameters of NRTL are derived from the experimental data.
below is my code:
clc,clear
options=optimset('MaxIter',4000,'MaxFunEvals',2000000,'algorithm','levenberg-marquardt');
b0=[0,0,0,0,0,0];
[b,gamma1,gamma2,gamma3,gamma4,gamma5,gamma6]=lsqnonlin('NRTL',b0,[],[],options);
Although the code gives the result, the result is not what I want. And the format of the output gamma is also wrong. It should be a matrix of the same order as x1, but it has become something I don't understand. Can someone please give a reason? It would be best to give some solutions. Thanks!
0 Comments
Accepted Answer
Matt J
on 4 Jul 2022
Edited: Matt J
on 4 Jul 2022
Your code makes strange assumptions about the output syntax of lsqnonlin.
Why do you think lsqnonlin will return values for the gamma variables in NRTL?
6 Comments
Torsten
on 4 Jul 2022
Edited: Torsten
on 4 Jul 2022
If you want
x(:,1)+x(:,2)+x(:,3)-1.0 = 0;
x(:,4)+x(:,5)+x66-1.0 = 0
to be satisfied exactly and if you want x >= 0, use
options=optimset('MaxIter',40000,'MaxFunEvals',2000000,'algorithm','levenberg-marquardt');
x0=0.1.*ones(5,5);
lb = zeros(5,5);
ub = ones(5,5);
x=lsqnonlin('NRTLyan',x0,lb,ub,options);
together with the x(:,:) squared in your equations in function NRTLyan.
If you want x>= 0 and if it suffices if the relations
x(:,1)+x(:,2)+x(:,3)-1.0 = 0;
x(:,4)+x(:,5)+x66-1.0 = 0
are only approximately satisfied, use
options=optimset('MaxIter',40000,'MaxFunEvals',2000000,'algorithm','levenberg-marquardt');
x0=0.1.*ones(5,5);
lb = zeros(5,5);
ub = ones(5,5);
x=lsqnonlin('NRTLyan',x0,lb,ub,options);
together with
f=[x(:,1).*gamma1-gamma4.*x(:,4);x(:,2).*gamma2-gamma5.*x(:,5);x(:,3).*gamma3-gamma6.*x66;x(:,1)+x(:,2)+x(:,3)-1.0;x(:,4)+x(:,5)+x66-1.0];
If you want the relations
x(:,1)+x(:,2)+x(:,3)-1.0 = 0;
x(:,4)+x(:,5)+x66-1.0 = 0
to be satisfied exactly, but x>= 0 does not matter, only solve for x(:,i) for i=1,2,4 and calculate x(:,j) for j=3,5 from the relation.
More Answers (0)
See Also
Categories
Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!