# Adding vertical line to plot?

1,795 views (last 30 days)
Philip on 25 Feb 2011
Commented: Walter Roberson on 26 Feb 2023
Hi there, Can anyone please tell me how I can add a vertical line to my plot at a specified sample point? For example, I have a a 1x41 vector of intensity values, and I would like to add a vertical line on the center sample (sample number 21). Many thanks!
##### 3 CommentsShow 1 older commentHide 1 older comment
Benita on 26 Feb 2023
(4x3+y3 )dx+(3xy²-8y3)dy=0
Walter Roberson on 26 Feb 2023

Michelle Hirsch on 28 Aug 2023
Edited: MathWorks Support Team on 28 Apr 2022
Woohoo - this is built into MATLAB now, as of R2018b!
If you are running R2018b or later, you can use the “xline” and “yline” functions. For example, create a vertical line at x=5:
xline(5)
Create a horizontal line at y=10:
yline(10)
Starting in R2021a, you can create multiple horizontal or vertical lines in one pass. For example, create vertical lines at x=1, x=2, and x=3:
xline([1 2 3])
If you are running R2018a or earlier, use the “plot” function with this pattern:
Horizontal line:
plot([x1 x2],[y y])
Vertical line:
plot([x x],[y1 y2])
For example, plot a vertical line at x = 21. Set the y values using the y-axis limits of the axes.
y = ylim; % current y-axis limits
plot([21 21],[y(1) y(2)])
Walter Roberson on 21 Feb 2021
Roberto Chang on 23 Aug 2021
Hello all! do you know if this magical (awesome) feature can be done in Z axis for bar3?

line([x x], [y1 y2]); is the easy command;
Claire Flashman on 11 Feb 2018
Thank you!
Christian Sanchez on 8 May 2020
Genial

carolina franco on 26 Oct 2017
Edited: MathWorks Support Team on 8 Nov 2018
You can plot a horizontal or vertical line using the “plot” function with this pattern:
- Horizontal line:
plot([x1 x2],[y y])
- Vertical line:
plot([x x],[y1 y2])
For example, plot a vertical line at x = 21. Set the y values using the y-axis limits of the axes.
y = ylim; % current y-axis limits
plot([21 21],[y(1) y(2)])
As Steven suggested, starting in R2018b, you can use the “xline” and “yline” functions instead. For more information, see:
Edward Manson on 28 Aug 2019
Edited: Edward Manson on 28 Aug 2019
What an absolute god, thankyou
Rasmus Ringsborg Nielsen on 11 Mar 2021
Thank you so much, works perfect!!

Mark on 12 Mar 2013
Edited: Mark on 12 Mar 2013
Probably the simplest way:
Choose the x-value where you want the line "xval." Choose the minimum y value to be displayed on your graph "ymin" and the maximum y value to be displayed on your graph "ymax."
x=[xval,xval];
y=[ymin,ymax];
plot(x,y)
Flaws with this method: probably will look silly if you use '-x' or '-.', these mark your specific points on the line, but you'll only have two (at least they're endpoints).

Steven Lord on 1 Nov 2018
If you're using release R2018b or later, use the xline or yline functions to create lines with constant x or y values respectively.
Gary Bikini on 26 Apr 2019

the cyclist on 25 Feb 2011
One way:
figure
x = rand(1,41);
y = 1:41;
plot(x,y,'r.');
line([x(21) x(21)],[0 41]);
set(gca,'YLim',[0 41])

James on 28 Mar 2014
Edited: James on 28 Mar 2014
There is an excellent answer over on http://stackoverflow.com/a/8108766/1194420 repeated below for convenience. ---
There exist an undocumented function graph2d.constantline:
plot(-2:5, (-2:5).^2-1)
%# vertical line
hx = graph2d.constantline(0, 'LineStyle',':', 'Color',[.7 .7 .7]);
changedependvar(hx,'x');
%# horizontal line
hy = graph2d.constantline(0, 'Color',[.7 .7 .7]);
changedependvar(hy,'y');
Walter Roberson on 8 Feb 2020
Moved: DGM on 25 Feb 2023
-2:5 is the list of values -2 -1 0 1 2 3 4 5 . The .^2 squares each element of the list giving you 4 1 0 1 4 9 16 25 . Then you subtract 1 from each giving you 3 0 -1 0 3 8 15 24
Adrian Peters on 8 Feb 2020
Moved: DGM on 25 Feb 2023
Now it makes sense to me! Thank you a lot!

Maybe it is a bit late but I want to contribute, there is a really easy way to add vertical and horizontal lines, you just have to use a hold and then overlap them over the main plot.
Before declaring the original plot, add a hold on to ensure it will retain both plots, then plot the lines, with this structure:
hold on;
plot(the main function)
plot([x x],[0 y_max]) % Vertical Line
plot([o x_max],[y y]) % Horizontal line
Being:
x: location on horizontal axis where you place the vertical line.
y: location on vertical axis where you place the horizontal line.
x_max: point where you want the vertical line to end.
y_max: point where you want the horizontal line to end.
Walter Roberson on 23 Apr 2018
If you use line() instead of plot() then you do not need the "hold". line() is one of the primitives that always adds to the current plot; it is the "high level plotting routines" that clear the current axes before plotting and need the "hold"
Thanks!

Julian Williams on 9 Feb 2019
Small additional suggestion, say you want to label your line in the legend so that it has some meaning, or take advantage of some of the easy to use options in plot, then using "hold", the ylim from the current axis and the "repmat" is very useful. You can also make multiple vertical lines with some spacing using this technique.
figure
% make some sort of illustration
T = 1000;
A = 0.7;
h = [];
Y = cumsum(sqrt(0.05).*randn(T,1));
X = (1:T)./T;
I = find(X>A);
Y(I) = Y(I(1));
h(1) = plot(X,Y,'-k','linewidth',2);
hold on
dims = get(gca,'ylim');
yy = linspace(dims(1),dims(2),100);
xx = repmat(A,1,100);
h(2) = plot(xx,yy,':r','linewidth',2);
dims = get(gca,'xlim');
xx = linspace(dims(1),dims(2).*A,100);
yy = repmat(Y(I(1)),1,100);
h(3) = plot(xx,yy,':b','linewidth',2);
grid on
G = legend(h,'Particle Motion','Stopping Point','Stopped Value');
set(G,'location','best','interpreter','latex');
Just a thought.

Guy Cohen on 22 Nov 2022
You can use arrayfun
x=1:180;
vLines=[20 40 50 120];%-- vector of lines to plot
hold on; arrayfun(@xline,vLines);%-- plot vertical lines
Walter Roberson on 22 Nov 2022
You could, but xline accepts a vector of values, so you can just
x=1:180;
xline([20 40 50 120])
Guy Cohen on 22 Nov 2022

Jos (10584) on 8 Jul 2014
You might also be interested in GRIDXY on the File Exchange:

### Categories

Find more on Annotations in Help Center and File Exchange

### Tags

No tags entered yet.

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!