curve fitting exponential function with two terms
19 views (last 30 days)
Show older comments
Update: I need help curve fitting this set of points with an exponential function with two terms nicely.
% Curve Fit
x = [6500 6350 6000 5400 4500];
y = [0 0.25 0.5 0.75 1.0];
theFit=fit(x' , y', 'exp2')
10 Comments
Image Analyst
on 12 Nov 2023
Sorry, but I don't believe you. When I swap x and y, the fit looks great.
% Curve Fit
y = [6500 6350 6000 5400 4500];
x = [0 0.25 0.5 0.75 1.0];
theFit=fit(x' , y', 'exp2')
plot(theFit , x , y)
Answers (3)
Matt J
on 11 Nov 2023
Edited: Matt J
on 11 Nov 2023
You should normalize your x data
% Curve Fit
x = [6500 6350 6000 5400 4500];
x=(x-mean(x))/std(x);
y = [0 0.25 0.5 0.75 1.0];
Also, I would recommend downloading fminspleas from the File Exchange
and using it to generate an initial guess for fit():
e=@(a,xd)exp(a*xd);
flist={@(p,xd) e(p(1),xd) , @(p,xd) e(p(2),xd)};
[bd,ac]=fminspleas(flist,[-1,1],x, y);
theFit=fit(x',y','exp2','StartPoint',[ac(1),bd(1),ac(2), bd(2) ])
plot(theFit,x,y)
5 Comments
Torsten
on 12 Nov 2023
Edited: Torsten
on 12 Nov 2023
x = [6500 6350 6000 5400 4500];
xt = (x-mean(x))/std(x);
y = [0 0.25 0.5 0.75 1.0];
theFit=fit(xt',y','exp2')
theFit.b = theFit.b/std(x);
theFit.a = theFit.a*exp(-theFit.b*mean(x));
theFit.d = theFit.d/std(x);
theFit.c = theFit.c*exp(-theFit.d*mean(x));
theFit
plot(theFit,x,y)
Matt J
on 12 Nov 2023
I mentioned in the comments that I needed to change my points (noticed an error in my work).
All answers in this thread have been demonstrated using your new points.
Matt J
on 12 Nov 2023
Edited: Matt J
on 12 Nov 2023
You can also use fit()'s normalizer,
x = [6500 6350 6000 5400 4500];
y = [0 0.25 0.5 0.75 1.0];
theFit=fit(x',y','exp2','Normalize','on')
plot(theFit,x,y)
2 Comments
Matt J
on 12 Nov 2023
Edited: Matt J
on 12 Nov 2023
If you need to explicitly manipulate the coefficients and fit function, you'll have to do the normalization manually:
% Curve Fit
x = [6500 6350 6000 5400 4500];
xmu=mean(x);
xstd=std(x);
y = [0 0.25 0.5 0.75 1.0];
theFit=fit((x-xmu)'/xstd,y','exp2');
% Monthly Cost
cost = x;
costUtility = y;
% Plot Utility Points
figure;
plot(cost,costUtility,'*');
xlim([4500 6500]);ylim([0 1.25]);
yticks([costUtility 1.25]);
grid on;
xlabel('Monthly Cost ($)');
ylabel('Utility');
legend('Utility Points');
% Add utility curve fit
coeff=num2cell(coeffvalues(theFit));
[a,b,c,d]=deal(coeff{:});
curveX = linspace(4500,6500);
X=(curveX-xmu)/xstd;
curveY = a*exp(b*X) + c*exp(d*X);
hold on;
plot(curveX,curveY,'Color','b');
legend('Utility Points','Utility Curve Fit');
Alex Sha
on 12 Nov 2023
Edited: Alex Sha
on 12 Nov 2023
If taking the fitting function as: y=a*exp(b*x) + c*exp(d*x);
and also taking the data like below directly;
x = [6500 6350 5800 4900 4500];
y = [0 0.25 0.5 0.75 1.0];
The unique stable result should be:
Sum Squared Error (SSE): 0.00221359211819696
Root of Mean Square Error (RMSE): 0.0210408750682901
Correlation Coef. (R): 0.998229714370904
R-Square: 0.996462562653016
Parameter Best Estimate
--------- -------------
a 11.4185972844776
b -0.000545792212445247
c -1.22298024843855E-22
d 0.00759142468815435
If add one more parameter, that is the fitting function become: y=a*exp(b*x)+c*exp(d*x)+e; the result will be perfect:
Sum Squared Error (SSE): 4.41584921368883E-29
Root of Mean Square Error (RMSE): 2.97181736103982E-15
Correlation Coef. (R): 1
R-Square: 1
Parameter Best Estimate
--------- -------------
a -2.47788945923639E-15
b 0.00505297753885221
c 332.002937639918
d -0.00141137023194644
e 0.420769231934917
11 Comments
Alex Sha
on 13 Nov 2023
It would be a good suggestion for Mathwork, although not claer how 1stOpt process such problem internally.
Matt J
on 13 Nov 2023
MathWorks' fit() routine does have an internal normalization step which can be enabled,
However, if 1stOpt does something similar, it appears to be smart enough to post-transform the parameters and undo the effect of the data normalization. fit() does not do that.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!