Regression on multi-variable data
1 view (last 30 days)
Show older comments
Hello I have a set of data that looks like this:

I want a model of the form
M(x, y, x) = p*(x^0.5) + q(y^0.5) + s(z^0.5)
-> all the exponents are equal to 0.5
where p, q and s are the coefficients that I am looking for.
Each x, y, z, M is a experimental data point, therefore there exist some error in the data, and I want the model with the best fit from which I can calculate the overal error.
How can I obtain this ?
I greatly appreciate your suggestions
0 Comments
Answers (1)
Star Strider
on 15 Aug 2019
This is a linear problem, so a linear solution will work.
Try this:
M = [1.48 1 0.9 0.69 0];
x = [8.526 5.6 6.9654 7 0];
y = [0.105 2.8 1.7838 0 0];
z = [0.348 0.21 0 .02 0.25];
B = sqrt([x(:) y(:) z(:) ones(5,1)]) \ M(:);
p = B(1)
q = B(2)
s = B(3)
intcpt = B(4)
Mfit = sqrt([x(:) y(:) z(:) ones(5,1)]) * B;
Resid = M(:) - Mfit
producing:
p =
0.443190863040845
q =
0.075119847669093
s =
0.931994338072853
intcpt =
-0.488034944641904
Resid =
0.099808696536123
-0.113539064951291
0.118034358405705
-0.126341765596015
0.022037775605478
There are too many dimensions to plot, however the residuals indicate the the fit is reasonably good.
0 Comments
See Also
Categories
Find more on Linear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!