Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
27:09 Video length is 27:09.
  • Description
  • Related Resources

Next-Generation Wi-Fi Networks for Time-Critical Applications

Mikhail Galeev, Intel

Wireless Time Sensitive Networks (TSN) is an emerging research area, which can enable new applications and services for many industrial automation systems that rely on time-synchronized (and timely) communication among sensing, computing, and actuating devices. Feasibility demonstration using hardware platforms is a required step before wireless technologies can be adopted in soft and hard real-time industrial applications. However, in order to experiment with time synchronization and other TSN features that control latency and reliability over the wireless medium, it is fundamental to have access to lower level MAC and PHY layer implementations. This presentation introduces a wireless platform for experimental work in the Wi-Fi physical layer. Next-generation Wi-Fi being defined by the IEEE 802.11ax Task Group introduces several features and capabilities that can significantly improve the support for industrial automation applications.

We have recently demonstrated an 802.11ax baseband experimental implementation (with select features) on an Intel Arria 10 FPGA platform integrated with an off-the-shelf analog front end. This SDR platform enables the development of techniques to optimize latency in FPGA and application-specific implementations. For instance, several latency optimizations were developed using this platform, including parallelization techniques for binary convolutional codes, low-latency streaming Fourier transforms, and tightly pipelined transmit and receive processing chains.

Using 802.11ax baseband design, this presentation demonstrates a workflow for wireless system design that utilizes MATLAB®, Simulink® modeling, Embedded Coder®, and HDL Coder™ as a unified tool set for rapid prototyping. We discuss software vs. FPGA implementation partitioning based on a deliverable’s objective and tradeoffs.

Recorded: 6 Nov 2019

Related Products

  • MATLAB
  • Embedded Coder
  • HDL Coder
  • Simulink

Learn More

View slides
See all proceedings from MATLAB EXPO 2019 United States

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper
Related Information
Request Trial

Feedback

Featured Product

MATLAB

  • Request Trial
  • Get Pricing

Up Next:

35:18
Real-Time Control and Analysis in Biomedical Applications...

Related Videos:

28:30
Embedded Code Generation for Your Vehicle Control Systems
39:33
Automatic Code Generation for Embedded Control Systems
24:01
Best Practices and Lessons Learned During Test Case...
48:03
Introduction to Data Analysis with MATLAB for Aerospace...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation