This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

estimateFrontierByReturn

Estimate optimal portfolios with targeted portfolio returns

Syntax

[pwgt,pbuy,psell] = estimateFrontierByReturn(obj,TargetReturn)

Description

example

[pwgt,pbuy,psell] = estimateFrontierByReturn(obj,TargetReturn) estimates optimal portfolios with targeted portfolio returns for Portfolio, PortfolioCVaR, or PortfolioMAD objects. For details on the respective workflows when using these different objects, see Portfolio Object Workflow, PortfolioCVaR Object Workflow, and PortfolioMAD Object Workflow.

Examples

collapse all

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn function accepts one or more target portfolio returns and obtains efficient portfolios with the specified returns. Assume you have a universe of four assets where you want to obtain efficient portfolios with target portfolio returns of 6%, 9%, and 12%.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierByReturn(p, [0.06, 0.09, 0.12]);

display(pwgt);
pwgt = 4×3

    0.8772    0.5032    0.1293
    0.0434    0.2488    0.4541
    0.0416    0.0780    0.1143
    0.0378    0.1700    0.3022

When any one, or any combination of the constraints from 'Conditional' BoundType, MinNumAssets, and MaxNumAssets are active, the portfolio problem is formulated as mixed integer programming problem and the MINLP solver is used.

Create a Portfolio object for three assets.

AssetMean = [ 0.0101110; 0.0043532; 0.0137058 ];
AssetCovar = [ 0.00324625 0.00022983 0.00420395;
               0.00022983 0.00049937 0.00019247;
               0.00420395 0.00019247 0.00764097 ];  
p = Portfolio('AssetMean', AssetMean, 'AssetCovar', AssetCovar);
p = setDefaultConstraints(p);           

Use setBounds with semicontinuous constraints to set xi = 0 or 0.02 <= xi <= 0.5 for all i = 1,...NumAssets.

p = setBounds(p, 0.02, 0.7,'BoundType', 'Conditional', 'NumAssets', 3);                    

When working with a Portfolio object, the setMinMaxNumAssets function enables you to set up the limits on the number of assets invested (as known as cardinality) constraints. This sets the total number of allocated assets satisfying the Bound constraints that are between MinNumAssets and MaxNumAssets. By setting MinNumAssets = MaxNumAssets = 2, only two of the three assets are invested in the portfolio.

p = setMinMaxNumAssets(p, 2, 2);  

Use estimateFrontierByReturn to estimate optimal portfolios with targeted portfolio returns.

[pwgt, pbuy, psell] = estimateFrontierByReturn(p,[ 0.0072321, 0.0119084 ])
pwgt = 3×2

         0    0.5000
    0.6922         0
    0.3078    0.5000

pbuy = 3×2

         0    0.5000
    0.6922         0
    0.3078    0.5000

psell = 3×2

     0     0
     0     0
     0     0

The estimateFrontierByReturn function uses the MINLP solver to solve this problem. Use the setSolverMINLP function to configure the SolverType and options.

p.solverTypeMINLP
ans = 
'OuterApproximation'
p.solverOptionsMINLP
ans = struct with fields:
                           MaxIterations: 1000
                    AbsoluteGapTolerance: 1.0000e-07
                    RelativeGapTolerance: 1.0000e-05
                  NonlinearScalingFactor: 1000
                  ObjectiveScalingFactor: 1000
                                 Display: 'off'
                           CutGeneration: 'basic'
                MaxIterationsInactiveCut: 30
                      ActiveCutTolerance: 1.0000e-07
                  IntMasterSolverOptions: [1x1 optim.options.Intlinprog]
    NumIterationsEarlyIntegerConvergence: 30

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn function accepts one or more target portfolio returns and obtains efficient portfolios with the specified returns. Assume you have a universe of four assets where you want to obtain efficient portfolios with target portfolio returns of 7%, 10%, and 13%.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

rng(11);

p = PortfolioCVaR;
p = simulateNormalScenariosByMoments(p, m, C, 2000);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierByReturn(p, [0.07 0.10, 0.13]);

display(pwgt);
pwgt = 4×3

    0.7371    0.3071         0
    0.1504    0.3919    0.4396
    0.0286    0.1011    0.1360
    0.0839    0.1999    0.4244

The function rng(seed) is used to reset the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

To obtain efficient portfolios that have targeted portfolio returns, the estimateFrontierByReturn function accepts one or more target portfolio returns and obtains efficient portfolios with the specified returns. Assume you have a universe of four assets where you want to obtain efficient portfolios with target portfolio returns of 7%, 10%, and 13%.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];

rng(11);

p = PortfolioMAD;
p = simulateNormalScenariosByMoments(p, m, C, 2000);
p = setDefaultConstraints(p);

pwgt = estimateFrontierByReturn(p, [0.07 0.10, 0.13]);

display(pwgt);
pwgt = 4×3

    0.7436    0.3147         0
    0.1357    0.3836    0.4422
    0.0328    0.0938    0.1324
    0.0879    0.2079    0.4254

The function rng(seed) is used to reset the random number generator to produce the documented results. It is not necessary to reset the random number generator to simulate scenarios.

Input Arguments

collapse all

Object for portfolio, specified using Portfolio, PortfolioCVaR, or PortfolioMAD object. For more information on creating a portfolio object, see

Data Types: object

Target values for portfolio return, specified as a NumPorts vector.

Note

TargetReturn specifies target returns for portfolios on the efficient frontier. If any TargetReturn values are outside the range of returns for efficient portfolios, the TargetReturn is replaced with the minimum or maximum efficient portfolio return, depending upon whether the target return is below or above the range of efficient portfolio returns.

Data Types: double

Output Arguments

collapse all

Optimal portfolios on the efficient frontier with specified target returns from TargetReturn, returned as a NumAssets-by-NumPorts matrix. pwgt is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Purchases relative to an initial portfolio for optimal portfolios on the efficient frontier, returned as NumAssets-by-NumPorts matrix.

Note

If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0 such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

pbuy is returned for a Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Sales relative to an initial portfolio for optimal portfolios on the efficient frontier, returned as a NumAssets-by-NumPorts matrix.

Note

If no initial portfolio is specified in obj.InitPort, that value is assumed to be 0 such that pbuy = max(0, pwgt) and psell = max(0, -pwgt).

psell is returned for Portfolio, PortfolioCVaR, or PortfolioMAD input object (obj).

Tips

You can also use dot notation to estimate optimal portfolios with targeted portfolio returns.

[pwgt, pbuy, psell] = obj.estimateFrontierByReturn(TargetReturn);

Introduced in R2011a