**Class: **TriScatteredInterp

(Not recommended) Interpolate scattered data

`TriScatteredInterp`

is not recommended. Use `scatteredInterpolant`

instead.

`F = TriScatteredInterp()`

F = TriScatteredInterp(X, V)

F = TriScatteredInterp(X, Y, V)

F
= TriScatteredInterp(X, Y, Z, V)

F = TriScatteredInterp(DT, V)

F = TriScatteredInterp(..., method)

`F = TriScatteredInterp()`

creates an empty scattered data interpolant.
This can subsequently be initialized with sample data points and values
(`Xdata`

, `Vdata`

) via `F.X = Xdata`

and
`F.V = Vdata`

.

`F = TriScatteredInterp(X, V)`

creates an interpolant that fits a
surface of the form `V = F(X)`

to the scattered data in
(`X`

, `V`

). `X`

is a matrix of size
`mpts`

-by-`ndim`

, where `mpts`

is the
number of points and `ndim`

is the dimension of the space where the points
reside (`ndim`

is 2 or 3). The column vector `V`

defines the
values at `X`

, where the length of `V`

equals
`mpts`

.

`F = TriScatteredInterp(X, Y, V)`

and
```
F
= TriScatteredInterp(X, Y, Z, V)
```

allow the data point locations to be
specified in alternative column vector format when working in 2-D and 3-D.

`F = TriScatteredInterp(DT, V)`

uses the specified
`DelaunayTri`

object `DT`

as a basis for computing the
interpolant. `DT`

is a Delaunay triangulation of the scattered data
locations, `DT.X`

. The matrix `DT.X`

is of size
`mpts`

-by-`ndim`

, where `mpts`

is the
number of points and `ndim`

is the dimension of the space where the points
reside, `2 <= ndim <= 3`

. `V`

is a column vector that
defines the values at `DT.X`

, where the length of `V`

equals
`mpts`

.

`F = TriScatteredInterp(..., method)`

allows selection of the technique
`method`

used to interpolate the data.

`X` | Matrix of size
`mpts` -by-`ndim` , where `mpts` is
the number of points and `ndim` is the dimension of the space where
the points reside. Input may also be specified as column vectors
(`X` , `Y` ) or (`X` ,
`Y` , `Z` ) | |

`V` | Column vector that defines the values
at `X` , where the length of `V` equals
`mpts` . | |

`DT` | Delaunay triangulation of the scattered data locations | |

`method` | `natural` | Natural neighbor interpolation |

`linear` | Linear interpolation (default) | |

`nearest` | Nearest-neighbor interpolation |

`F` | Creates an interpolant that fits a surface of the form ```
V =
F(X)
``` to the scattered data. |

To evaluate the interpolant, express the statement in Monge's form ```
Vq =
F(Xq)
```

, `Vq = F(Xq,Yq)`

, or `Vq = F(Xq,Yq,Zq)`

where `Vq`

is the value of the interpolant at the query location and
`Xq`

, `Yq`

, and `Zq`

are the vectors of
point locations.

Create a data set:

x = rand(100,1)*4-2; y = rand(100,1)*4-2; z = x.*exp(-x.^2-y.^2);

F = TriScatteredInterp(x,y,z);

`(qx, qy)`

. The corresponding value at these
locations is `qz`

.ti = -2:.25:2; [qx,qy] = meshgrid(ti,ti); qz = F(qx,qy); mesh(qx,qy,qz); hold on; plot3(x,y,z,'o');

`delaunayTriangulation`

| `interp1`

| `interp2`

| `interp3`

| `meshgrid`