File Exchange

image thumbnail

Impulse response invariant discretization of fractional order integrators/differe​ntiators

version 1.0.0.0 (1.55 KB) by YangQuan Chen
compute a discrete-time finite dimensional (z) transfer function to approximate s^r, r is real numbe

4 Downloads

Updated 05 Sep 2008

No License

% Impulse response invariant discretization of fractional order
% integrators/differentiators
%
% irid_fod function is prepared to compute a discrete-time finite dimensional
% (z) transfer function to approximate a continuous irrational transfer
% function s^r, where "s" is the Laplace transform variable, and "r" is a
% real number in the range of (-1,1). s^r is called a fractional order
% differentiator if 0 < r < 1 and a fractional order integrator if -1 < r < 0.
%
% The proposed approximation keeps the impulse response "invariant"
%
% IN:
% r: the fractional order
% Ts: the sampling period
% norder: the finite order of the approximate z-transfer function
% (the orders of denominator and numerator z-polynomial are the same)
% OUT:
% sr: returns the LTI object that approximates the s^r in the sense
% of impulse response.
% TEST CODE
% dfod=irid_fod(-.5,.01,5);figure;pzmap(dfod)
%
% Reference: YangQuan Chen. "Impulse-invariant and step-invariant
% discretization of fractional order integrators and differentiators".
% August 2008. CSOIS AFC (Applied Fractional Calculus) Seminar.
% http://fractionalcalculus.googlepages.com/

Cite As

YangQuan Chen (2021). Impulse response invariant discretization of fractional order integrators/differentiators (https://www.mathworks.com/matlabcentral/fileexchange/21342-impulse-response-invariant-discretization-of-fractional-order-integrators-differentiators), MATLAB Central File Exchange. Retrieved .

Comments and Ratings (2)

pengchong chen

when r>1,how can i deal with it

Bo

This is what I need.

MATLAB Release Compatibility
Created with R2007a
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!