BCH Encoder
Create BCH code from binary vector data
Libraries:
Communications Toolbox /
Error Detection and Correction /
Block
Description
The BCH Encoder block creates a BCH code with message length K and codeword length (N – number of punctures).
If the encoder is processing multiple codewords per frame, then the same puncture pattern holds for all codewords. The input and output signal lengths are listed in Input and Output Signal Length in BCH Blocks.
See Tips for information about valid N values, valid (N,K) pairs, and error-correcting capabilities for a given BCH code.
Examples
DVB-S.2 Link, Including LDPC Coding in Simulink
The state-of-the-art channel coding scheme used in the second generation Digital Video Broadcasting standard (DVB-S.2), which is deployed by DIRECTV in the United States. The coding scheme is based on concatenation of LDPC (Low-Density Parity-Check) and BCH codes. LDPC codes, invented by Gallager in his seminal doctoral thesis in 1960, can achieve extremely low error rates near channel capacity by using a low-complexity iterative decoding algorithm. The outer BCH codes are used to correct sporadic errors made by the LDPC decoder.
Ports
Input
In — Message to encode
binary column vector
Message to encode, specified as a binary column vector input signal with an integer multiple of Message length, K elements or Shortened message length, S elements if the code is shortened. Each group of input elements represents one message word to encode. The input and output signal lengths are listed in Input and Output Signal Length in BCH Blocks.
Data Types: single
| double
| int8
| int16
| int32
| uint8
| uint16
| uint32
| Boolean
Output
Out — Encoded message
binary column vector
Encoded message, returned as a binary column vector. The encoded message is a BCH code with message length K and codeword length (N – number of punctures).
Data Types: single
| double
| int8
| int16
| int32
| uint8
| uint16
| uint32
| Boolean
For more information, see Supported Data Types.
Parameters
To edit block parameters interactively, use the Property Inspector. From the Simulink® Toolstrip, on the Simulation tab, in the Prepare gallery, select Property Inspector.
Codeword length, N — Codeword length
15
(default) | integer
Codeword length, specified as an integer of the form N = 2M–1, where M is an integer from 3 through 16. For more information, see Tips.
Message length, K — Message length
5
(default) | integer
Message length, specified as an integer. The (N
,
K
) pair must produce a narrow-sense BCH code.
Shortened message length, S — Shortened message length
5
(default) | integer
Shortened message length, specified as an integer. When you specify this parameter, provide full-length N and K values to specify the (N, K) code that is shortened to an (N–K+S, S) code.
Dependencies
To enable this parameter, select Specify shortened message length.
Generator polynomial — Generator polynomial
'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1'
(default) | polynomial character vector | binary row vector | binary Galois row vector
Generator polynomial, specified as one of the following:
A polynomial character vector — For more information, see Representation of Polynomials in Communications Toolbox.
A binary row vector that represents the coefficients of the generator polynomial in order of descending power.
A binary Galois row vector that represents the coefficients of the generator polynomial in order of descending power.
Example: 'X^10 + X^8 + X^5 + X^4 + X^2 + X + 1'
, which is
equivalent to bchgenpoly(15,5)
Dependencies
To enable this parameter, select Specify generator polynomial.
Primitive polynomial — Primitive polynomial
'X^4 + X + 1'
(default) | polynomial character vector | binary row vector
Primitive polynomial in order of descending power. It is a polynomial of order M that defines the finite Galois field GF(2), specified as one of the following:
A polynomial character vector — For more information, see Representation of Polynomials in Communications Toolbox.
A binary row vector that represents the coefficients of the generator polynomial in order of descending power.
Example: 'X^4 + X + 1'
, which is the primitive polynomial used for
a (15,5) code, ppoly = primpoly(4,'nodisplay');
int2bit(ppoly,ceil(log2(max(ppoly))))'
Dependencies
To enable this parameter, select Specify primitive polynomial.
Disable generator polynomial checking — Option to disable generator polynomial checking
on (default) | off
Select this parameter to disable generator polynomial check.
Each time a model initializes, the block performs a polynomial check. This check verifies that X N + 1 is divisible by the specified generator polynomial, where N represents the full codeword length. For larger codes, disabling the check speeds up the simulation process.
Tip
Always run the check at least once before disabling this feature.
Dependencies
To enable this parameter, select Specify generator polynomial.
Puncture vector — Puncture vector
[ones(8,1); zeros(2,1)]
(default) | binary column vector
Puncture vector, specified as a binary column vector of length
N–K. Element indices with 1
s
represent data symbol indices that pass through the block unaltered. Element indices
with 0
s represent data symbol indices that get punctured, or removed,
from the data stream. For more information, see Shortening, Puncturing, and Erasures.
Note
1
s and 0
s have precisely opposite meanings
for the puncture and erasure vectors. For an erasure vector, 1
means that the data symbol is to be replaced with an erasure symbol, and
0
means that the data symbol is passed through the block
unaltered. This convention applies to both the encoder and the decoder.
Dependencies
To enable this parameter, select Puncture code.
Block Characteristics
Data Types |
|
Multidimensional Signals |
|
Variable-Size Signals |
|
More About
Input and Output Signal Length in BCH Blocks
This table shows how to compute the input and output signal lengths for the BCH encoder and decoder blocks.
The notation y = c * x
denotes that y
is an integer multiple of x
.
Specify Shortened Message Length, S |
BCH Encoder |
BCH Decoder |
---|---|---|
off |
Input Length: c * K Output Length: c * (N – P) |
Input Length: c * (N – P) Output Length: c * K Erasures Length: c * (N – P) |
on |
Input Length: c * S Output Length: c * (N - K + S - P) |
Input Length: c * (N - K + S - P) Output Length: c * S
c * (N - K + S - P) |
N is the codeword length
K is the message length
S is the shortened message length
P is the number of punctures value, and is equal to the number of zeros in the puncture vector.
Supported Data Types
Port | Supported Data Types |
---|---|
In |
|
Out |
|
Pair Block
BCH Decoder — Decodes BCH encoded data.
Tips
To generate the list of valid (
N
,K
) pairs along with the corresponding values of the error-correction capability, runbchnumerr
(N
).Valid values for
N
= 2M–1, where M is an integer from 3 through 16. The maximum allowable value ofN
is 65,535.
Algorithms
This block implements the algorithm, inputs, and outputs described in Algorithms for BCH and RS Errors-only Decoding.
References
[1] Clark, George C., Jr., and J. Bibb Cain. Error-Correction Coding for Digital Communications. New York: Plenum Press, 1981.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
Version History
Introduced before R2006a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)