# imageInputLayer

Image input layer

## Description

An image input layer inputs 2-D images to a neural network and applies data normalization.

For 3-D image input, use `image3dInputLayer`

.

## Creation

### Description

sets optional properties using one or more name-value arguments.`layer`

= imageInputLayer(`inputSize`

,`Name=Value`

)

### Input Arguments

`inputSize`

— Size of the input

row vector of integers

Size of the input data, specified as a row vector of integers
`[h w c]`

, where `h`

,
`w`

, and `c`

correspond to the
height, width, and number of channels respectively.

For grayscale images, specify a vector with

`c`

equal to`1`

.For RGB images, specify a vector with

`c`

equal to`3`

.For multispectral or hyperspectral images, specify a vector with

`c`

equal to the number of channels.

For 3-D image or volume input, use `image3dInputLayer`

.

**Name-Value Arguments**

Specify optional pairs of arguments as
`Name1=Value1,...,NameN=ValueN`

, where `Name`

is
the argument name and `Value`

is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.

* Before R2021a, use commas to separate each name and value,
and enclose*
`Name`

*in quotes.*

**Example: **`imageInputLayer([28 28 3],Name="input")`

creates an
image input layer with input size `[28 28 3]`

and name
`'input'`

.

`Normalization`

— Data normalization

`"zerocenter"`

(default) | `"zscore"`

| `"rescale-symmetric"`

| `"rescale-zero-one"`

| `"none"`

| function handle

Data normalization to apply every time data is forward propagated through the input layer, specified as one of the following:

`"zerocenter"`

— Subtract the mean specified by`Mean`

.`"zscore"`

— Subtract the mean specified by`Mean`

and divide by`StandardDeviation`

.`"rescale-symmetric"`

— Rescale the input to be in the range [-1, 1] using the minimum and maximum values specified by`Min`

and`Max`

, respectively.`"rescale-zero-one"`

— Rescale the input to be in the range [0, 1] using the minimum and maximum values specified by`Min`

and`Max`

, respectively.`"none"`

— Do not normalize the input data.function handle — Normalize the data using the specified function. The function must be of the form

`Y = f(X)`

, where`X`

is the input data and the output`Y`

is the normalized data.

If the input data is
complex-valued and the `SplitComplexInputs`

option is `0`

(`false`

),
then the `Normalization`

option must be
`"zerocenter"`

,
`"zscore"`

, `"none"`

,
or a function handle.* (since R2024a)*

*Before R2024a: To input
complex-valued data into the network, the
SplitComplexInputs option must be
1 (true).*

**Tip**

The software, by default, automatically calculates the
normalization statistics when you use the `trainnet`

function. To save time when
training, specify the required statistics for normalization
and set the `ResetInputNormalization`

option in `trainingOptions`

to `0`

(`false`

).

The `ImageInputLayer`

object stores the
`Normalization`

property as a character
vector or a function handle.

`NormalizationDimension`

— Normalization dimension

`"auto"`

(default) | `"channel"`

| `"element"`

| `"all"`

Normalization dimension, specified as one of the following:

`"auto"`

– If the`ResetInputNormalization`

training option is`0`

(`false`

) and you specify any of the normalization statistics (`Mean`

,`StandardDeviation`

,`Min`

, or`Max`

), then normalize over the dimensions matching the statistics. Otherwise, recalculate the statistics at training time and apply channel-wise normalization.`"channel"`

– Channel-wise normalization.`"element"`

– Element-wise normalization.`"all"`

– Normalize all values using scalar statistics.

The `ImageInputLayer`

object stores the
`NormalizationDimension`

property as a
character vector.

`Mean`

— Mean for zero-center and z-score normalization

`[]`

(default) | 3-D array | numeric scalar

Mean for zero-center and z-score normalization, specified as a
*h*-by-*w*-by-*c*
array, a 1-by-1-by-*c* array of means per channel,
a numeric scalar, or `[]`

, where
*h*, *w*, and
*c* correspond to the height, width, and the
number of channels of the mean, respectively.

To specify the `Mean`

property,
the `Normalization`

property must
be `"zerocenter"`

or `"zscore"`

.
If `Mean`

is `[]`

,
then the software automatically sets the property at training or
initialization time:

The

`trainnet`

function calculates the mean using the training data and uses the resulting value.The

`initialize`

function and the`dlnetwork`

function when the`Initialize`

option is`1`

(`true`

) sets the property to`0`

.

`Mean`

can be
complex-valued.* (since R2024a)* If `Mean`

is
complex-valued, then the `SplitComplexInputs`

option must be `0`

(`false`

).

*Before R2024a: Split the mean into real
and imaginary parts and set split the input data into real and
imaginary parts by setting the SplitComplexInputs
option to 1 (true).*

**Data Types: **`single`

| `double`

| `int8`

| `int16`

| `int32`

| `int64`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

**Complex Number Support: **Yes

`StandardDeviation`

— Standard deviation for z-score normalization

`[]`

(default) | 3-D array | numeric scalar

Standard deviation for z-score normalization, specified as a
*h*-by-*w*-by-*c*
array, a 1-by-1-by-*c* array of means per channel,
a numeric scalar, or `[]`

, where
*h*, *w*, and
*c* correspond to the height, width, and the
number of channels of the standard deviation, respectively.

To specify the `StandardDeviation`

property, the `Normalization`

property must be
`"zscore"`

. If `StandardDeviation`

is `[]`

, then the
software automatically sets the property at training or
initialization time:

The

`trainnet`

function calculates the standard deviation using the training data and uses the resulting value.The

`initialize`

function and the`dlnetwork`

function when the`Initialize`

option is`1`

(`true`

) sets the property to`1`

.

`StandardDeviation`

can be complex-valued.* (since R2024a)* If
`StandardDeviation`

is complex-valued, then the
`SplitComplexInputs`

option must be
`0`

(`false`

).

*Before R2024a: Split the standard
deviation into real and imaginary parts and set split the input data
into real and imaginary parts by setting the
SplitComplexInputs option to
1 (true).*

**Data Types: **`single`

| `double`

| `int8`

| `int16`

| `int32`

| `int64`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

**Complex Number Support: **Yes

`Min`

— Minimum value for rescaling

`[]`

(default) | 3-D array | numeric scalar

Minimum value for rescaling, specified as a
*h*-by-*w*-by-*c*
array, a 1-by-1-by-*c* array of minima per channel,
a numeric scalar, or `[]`

, where
*h*, *w*, and
*c* correspond to the height, width, and the
number of channels of the minima, respectively.

To specify the `Min`

property,
the `Normalization`

must be
`"rescale-symmetric"`

or
`"rescale-zero-one"`

. If `Min`

is `[]`

, then the
software automatically sets the property at training or
initialization time:

The

`trainnet`

function calculates the minimum value using the training data and uses the resulting value.The

`initialize`

function and the`dlnetwork`

function when the`Initialize`

option is`1`

(`true`

) sets the property to`-1`

and`0`

when`Normalization`

is`"rescale-symmetric"`

and`"rescale-zero-one"`

, respectively.

**Data Types: **`single`

| `double`

| `int8`

| `int16`

| `int32`

| `int64`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

`Max`

— Maximum value for rescaling

`[]`

(default) | 3-D array | numeric scalar

Maximum value for rescaling, specified as a
*h*-by-*w*-by-*c*
array, a 1-by-1-by-*c* array of maxima per channel,
a numeric scalar, or `[]`

, where
*h*, *w*, and
*c* correspond to the height, width, and the
number of channels of the maxima, respectively.

To specify the `Max`

property,
the `Normalization`

must be
`"rescale-symmetric"`

or
`"rescale-zero-one"`

. If `Max`

is `[]`

, then the
software automatically sets the property at training or
initialization time:

The

`trainnet`

function calculates the maximum value using the training data and uses the resulting value.The

`initialize`

function and the`dlnetwork`

function when the`Initialize`

option is`1`

(`true`

) sets the property to`1`

.

**Data Types: **`single`

| `double`

| `int8`

| `int16`

| `int32`

| `int64`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

`SplitComplexInputs`

— Flag to split input data into real and imaginary components

`0`

(`false`

) (default) | `1`

(`true`

)

Flag to split input data into real and imaginary components specified as one of these values:

`0`

(`false`

) – Do not split input data.`1`

(`true`

) – Split data into real and imaginary components.

When `SplitComplexInputs`

is
`1`

, then the layer outputs twice as many
channels as the input data. For example, if the input data is
complex-valued with `numChannels`

channels, then
the layer outputs data with `2*numChannels`

channels, where channels `1`

through
`numChannels`

contain the real components of
the input data and `numChannels+1`

through
`2*numChannels`

contain the imaginary
components of the input data. If the input data is real, then
channels `numChannels+1`

through
`2*numChannels`

are all zero.

If the input data is
complex-valued and `SplitComplexInputs`

is
`0`

(`false`

), then the layer
passes the complex-valued data to the next layers.* (since R2024a)*

*Before R2024a: To input complex-valued
data into a neural network, the
SplitComplexInputs option of the input
layer must be 1 (true).*

For an example showing how to train a network with complex-valued data, see Train Network with Complex-Valued Data.

`Name`

— Layer name

`""`

(default) | character vector | string scalar

## Properties

### Image Input

`InputSize`

— Size of the input

row vector of integers

This property is read-only.

Size of the input data, specified as a row vector of integers
`[h w c]`

, where `h`

,
`w`

, and `c`

correspond to the
height, width, and number of channels respectively.

For grayscale images, specify a vector with

`c`

equal to`1`

.For RGB images, specify a vector with

`c`

equal to`3`

.For multispectral or hyperspectral images, specify a vector with

`c`

equal to the number of channels.

For 3-D image or volume input, use `image3dInputLayer`

.

`Normalization`

— Data normalization

`"zerocenter"`

(default) | `"zscore"`

| `"rescale-symmetric"`

| `"rescale-zero-one"`

| `"none"`

| function handle

This property is read-only.

Data normalization to apply every time data is forward propagated through the input layer, specified as one of the following:

`"zerocenter"`

— Subtract the mean specified by`Mean`

.`"zscore"`

— Subtract the mean specified by`Mean`

and divide by`StandardDeviation`

.`"rescale-symmetric"`

— Rescale the input to be in the range [-1, 1] using the minimum and maximum values specified by`Min`

and`Max`

, respectively.`"rescale-zero-one"`

— Rescale the input to be in the range [0, 1] using the minimum and maximum values specified by`Min`

and`Max`

, respectively.`"none"`

— Do not normalize the input data.function handle — Normalize the data using the specified function. The function must be of the form

`Y = f(X)`

, where`X`

is the input data and the output`Y`

is the normalized data.

If the input data is complex-valued and the
`SplitComplexInputs`

option is `0`

(`false`

), then the `Normalization`

option must be
`"zerocenter"`

, `"zscore"`

,
`"none"`

, or a function handle.* (since R2024a)*

*Before R2024a: To input complex-valued data into the network,
the SplitComplexInputs option must be 1
(true).*

**Tip**

The software, by default, automatically calculates the normalization statistics when you use
the `trainnet`

function. To save time when training, specify the required statistics for normalization
and set the `ResetInputNormalization`

option in `trainingOptions`

to `0`

(`false`

).

The `ImageInputLayer`

object stores this property as a character vector or a
function handle.

`NormalizationDimension`

— Normalization dimension

`"auto"`

(default) | `"channel"`

| `"element"`

| `"all"`

Normalization dimension, specified as one of the following:

`"auto"`

– If the`ResetInputNormalization`

training option is`0`

(`false`

) and you specify any of the normalization statistics (`Mean`

,`StandardDeviation`

,`Min`

, or`Max`

), then normalize over the dimensions matching the statistics. Otherwise, recalculate the statistics at training time and apply channel-wise normalization.`"channel"`

– Channel-wise normalization.`"element"`

– Element-wise normalization.`"all"`

– Normalize all values using scalar statistics.

The `ImageInputLayer`

object stores this property as a character vector.

`Mean`

— Mean for zero-center and z-score normalization

`[]`

(default) | 3-D array | numeric scalar

Mean for zero-center and z-score normalization, specified as a
*h*-by-*w*-by-*c*
array, a 1-by-1-by-*c* array of means per channel, a
numeric scalar, or `[]`

, where *h*,
*w*, and *c* correspond to the
height, width, and the number of channels of the mean,
respectively.

To specify the `Mean`

property, the `Normalization`

property must be `"zerocenter"`

or `"zscore"`

. If `Mean`

is
`[]`

, then the software automatically sets the property at training or
initialization time:

The

`trainnet`

function calculates the mean using the training data and uses the resulting value.The

`initialize`

function and the`dlnetwork`

function when the`Initialize`

option is`1`

(`true`

) sets the property to`0`

.

`Mean`

can be complex-valued.* (since R2024a)* If
`Mean`

is complex-valued, then the
`SplitComplexInputs`

option must be `0`

(`false`

).

*Before R2024a: Split the mean into real and imaginary parts and split
the input data into real and imaginary parts by setting the
SplitComplexInputs option to
1 (true).*

**Data Types: **`single`

| `double`

| `int8`

| `int16`

| `int32`

| `int64`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

**Complex Number Support: **Yes

`StandardDeviation`

— Standard deviation for z-score normalization

`[]`

(default) | 3-D array | numeric scalar

Standard deviation for z-score normalization, specified as a
*h*-by-*w*-by-*c*
array, a 1-by-1-by-*c* array of means per channel, a
numeric scalar, or `[]`

, where *h*,
*w*, and *c* correspond to the
height, width, and the number of channels of the standard deviation,
respectively.

To specify the `StandardDeviation`

property, the
`Normalization`

property must be
`"zscore"`

. If `StandardDeviation`

is
`[]`

, then the software automatically sets the property at training or
initialization time:

The

`trainnet`

function calculates the standard deviation using the training data and uses the resulting value.The

`initialize`

function and the`dlnetwork`

function when the`Initialize`

option is`1`

(`true`

) sets the property to`1`

.

`StandardDeviation`

can be
complex-valued.* (since R2024a)* If `StandardDeviation`

is complex-valued, then
the `SplitComplexInputs`

option must be `0`

(`false`

).

*Before R2024a: Split the standard deviation into real and imaginary
parts and split the input data into real and imaginary parts by setting the
SplitComplexInputs option to 1
(true).*

**Data Types: **`single`

| `double`

| `int8`

| `int16`

| `int32`

| `int64`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

**Complex Number Support: **Yes

`Min`

— Minimum value for rescaling

`[]`

(default) | 3-D array | numeric scalar

Minimum value for rescaling, specified as a
*h*-by-*w*-by-*c*
array, a 1-by-1-by-*c* array of minima per channel, a
numeric scalar, or `[]`

, where *h*,
*w*, and *c* correspond to the
height, width, and the number of channels of the minima,
respectively.

To specify the `Min`

property, the `Normalization`

must be `"rescale-symmetric"`

or
`"rescale-zero-one"`

. If `Min`

is
`[]`

, then the software automatically sets the property at training or
initialization time:

The

`trainnet`

function calculates the minimum value using the training data and uses the resulting value.The

`initialize`

function and the`dlnetwork`

function when the`Initialize`

option is`1`

(`true`

) sets the property to`-1`

and`0`

when`Normalization`

is`"rescale-symmetric"`

and`"rescale-zero-one"`

, respectively.

**Data Types: **`single`

| `double`

| `int8`

| `int16`

| `int32`

| `int64`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

`Max`

— Maximum value for rescaling

`[]`

(default) | 3-D array | numeric scalar

Maximum value for rescaling, specified as a
*h*-by-*w*-by-*c*
array, a 1-by-1-by-*c* array of maxima per channel, a
numeric scalar, or `[]`

, where *h*,
*w*, and *c* correspond to the
height, width, and the number of channels of the maxima,
respectively.

To specify the `Max`

property, the `Normalization`

must be `"rescale-symmetric"`

or
`"rescale-zero-one"`

. If `Max`

is
`[]`

, then the software automatically sets the property at training or
initialization time:

The

`trainnet`

function calculates the maximum value using the training data and uses the resulting value.`initialize`

function and the`dlnetwork`

function when the`Initialize`

option is`1`

(`true`

) sets the property to`1`

.

**Data Types: **`single`

| `double`

| `int8`

| `int16`

| `int32`

| `int64`

| `uint8`

| `uint16`

| `uint32`

| `uint64`

`SplitComplexInputs`

— Flag to split input data into real and imaginary components

`0`

(`false`

) (default) | `1`

(`true`

)

This property is read-only.

Flag to split input data into real and imaginary components specified as one of these values:

`0`

(`false`

) – Do not split input data.`1`

(`true`

) – Split data into real and imaginary components.

When `SplitComplexInputs`

is `1`

, then the layer
outputs twice as many channels as the input data. For example, if the input data is
complex-valued with `numChannels`

channels, then the layer outputs data
with `2*numChannels`

channels, where channels `1`

through `numChannels`

contain the real components of the input data and
`numChannels+1`

through `2*numChannels`

contain
the imaginary components of the input data. If the input data is real, then channels
`numChannels+1`

through `2*numChannels`

are all
zero.

If the input data is complex-valued and
`SplitComplexInputs`

is `0`

(`false`

), then the layer passes the complex-valued data to the
next layers.* (since R2024a)*

*Before R2024a: To input complex-valued data into a neural
network, the SplitComplexInputs option of the input layer must be
1 (true).*

For an example showing how to train a network with complex-valued data, see Train Network with Complex-Valued Data.

### Layer

`Name`

— Layer name

`""`

(default) | character vector | string scalar

`NumInputs`

— Number of inputs

0 (default)

This property is read-only.

Number of inputs of the layer. The layer has no inputs.

**Data Types: **`double`

`InputNames`

— Input names

`{}`

(default)

This property is read-only.

Input names of the layer. The layer has no inputs.

**Data Types: **`cell`

`NumOutputs`

— Number of outputs

`1`

(default)

This property is read-only.

Number of outputs from the layer, returned as `1`

. This layer has a
single output only.

**Data Types: **`double`

`OutputNames`

— Output names

`{'out'}`

(default)

This property is read-only.

Output names, returned as `{'out'}`

. This layer has a single output
only.

**Data Types: **`cell`

## Examples

### Create Image Input Layer

Create an image input layer for 28-by-28 color images.

inputlayer = imageInputLayer([28 28 3])

inputlayer = ImageInputLayer with properties: Name: '' InputSize: [28 28 3] SplitComplexInputs: 0 Hyperparameters DataAugmentation: 'none' Normalization: 'zerocenter' NormalizationDimension: 'auto' Mean: []

Include an image input layer in a `Layer`

array.

layers = [ imageInputLayer([28 28 1]) convolution2dLayer(5,20) reluLayer maxPooling2dLayer(2,Stride=2) fullyConnectedLayer(10) softmaxLayer]

layers = 6x1 Layer array with layers: 1 '' Image Input 28x28x1 images with 'zerocenter' normalization 2 '' 2-D Convolution 20 5x5 convolutions with stride [1 1] and padding [0 0 0 0] 3 '' ReLU ReLU 4 '' 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0] 5 '' Fully Connected 10 fully connected layer 6 '' Softmax softmax

## Algorithms

### Layer Output Formats

Layers in a layer array or layer graph pass data to subsequent layers as formatted `dlarray`

objects.
The format of a `dlarray`

object is a string of characters in which each
character describes the corresponding dimension of the data. The formats consist of one or
more of these characters:

`"S"`

— Spatial`"C"`

— Channel`"B"`

— Batch`"T"`

— Time`"U"`

— Unspecified

For example, you can describe 2-D image data that is represented as a 4-D array, where the
first two dimensions correspond to the spatial dimensions of the images, the third
dimension corresponds to the channels of the images, and the fourth dimension
corresponds to the batch dimension, as having the format `"SSCB"`

(spatial, spatial, channel, batch).

The input layer of a network specifies the layout of the data that the network expects. If you have data in a different layout, then specify the layout using the `InputDataFormats`

training option.

The layer inputs
*h*-by-*w*-by-*c*-by-*N*
arrays into the network, where *h*, *w*, and
*c* are the height, width, and number of channels of the
images, respectively, and *N* is the number of images. Data in this
layout has the data format `"SSCB"`

(spatial, spatial, channel,
batch).

### Complex Numbers

For complex-valued input to the neural network, when the `SplitComplexIputs`

is `0`

(`false`

), the layer passes complex-valued data to subsequent layers. * (since R2024a)*

*Before R2024a: To input complex-valued data into a neural network, the SplitComplexInputs option of the input layer must be 1 (true).*

If the input data is complex-valued and the `SplitComplexInputs`

option is `0`

(`false`

), then the `Normalization`

option must be `"zerocenter"`

, `"zscore"`

, `"none"`

, or a function handle. The `Mean`

and `StandardDeviation`

properties of the layer also support complex-valued data for the `"zerocenter"`

and `"zscore"`

normalization options.

For an example showing how to train a network with complex-valued data, see Train Network with Complex-Valued Data.

## References

[1] Krizhevsky, Alex, Ilya Sutskever, and
Geoffrey E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks."
*Communications of the ACM* 60, no. 6 (May 24, 2017): 84–90. https://doi.org/10.1145/3065386.

[2] Cireşan, D., U. Meier, J.
Schmidhuber. "Multi-column Deep Neural Networks for Image Classification".
*IEEE Conference on Computer Vision and Pattern Recognition*,
2012.

## Extended Capabilities

### C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation does not support passing

`dlarray`

objects with unspecified (U) dimensions to this layer.Code generation does not support

`Normalization`

specified using a function handle.Code generation does not support complex input and does not support the

`SplitComplexInputs`

option.

### GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Refer to the usage notes and limitations in the C/C++ Code Generation section. The same limitations apply to GPU code generation.

## Version History

**Introduced in R2016a**

### R2024a: Complex-valued outputs

For complex-valued input to the neural network, when the `SplitComplexIputs`

is `0`

(`false`

), the layer passes complex-valued data to subsequent layers.

If the input data is complex-valued and the `SplitComplexInputs`

option is
`0`

(`false`

), then the
`Normalization`

option must be `"zerocenter"`

,
`"zscore"`

, `"none"`

, or a function handle. The
`Mean`

and `StandardDeviation`

properties of the layer
also support complex-valued data for the `"zerocenter"`

and
`"zscore"`

normalization options.

### R2019b: `AverageImage`

property will be removed

`AverageImage`

will be removed. Use `Mean`

instead. To update your code, replace all instances of `AverageImage`

with `Mean`

.
There are no differences between the properties that require additional updates to your
code.

### R2019b: `imageInputLayer`

and `image3dInputLayer`

, by default, use channel-wise normalization

Starting in R2019b, `imageInputLayer`

and `image3dInputLayer`

,
by default, use channel-wise normalization. In previous versions, these layers use
element-wise normalization. To reproduce this behavior, set the `NormalizationDimension`

option of these layers to
`'element'`

.

### R2018a: `DataAugmentation`

is not recommended

The `DataAugmentation`

property is not recommended. To preprocess
images with cropping, reflection, and other geometric transformations, use `augmentedImageDatastore`

instead.

## MATLAB Command

You clicked a link that corresponds to this MATLAB command:

Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

## How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

### Americas

- América Latina (Español)
- Canada (English)
- United States (English)

### Europe

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)