Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

The Brownian Motion (BM) model (`bm`

) derives directly from the linear
drift (`sdeld`

) model:

$$d{X}_{t}=\mu (t)dt+V(t)d{W}_{t}$$

Create a univariate Brownian motion (`bm`

) object to represent the model
using `bm`

:

$$d{X}_{t}=0.3d{W}_{t}.$$

`obj = bm(0, 0.3) % (A = Mu, Sigma)`

obj = Class BM: Brownian Motion ---------------------------------------- Dimensions: State = 1, Brownian = 1 ---------------------------------------- StartTime: 0 StartState: 0 Correlation: 1 Drift: drift rate function F(t,X(t)) Diffusion: diffusion rate function G(t,X(t)) Simulation: simulation method/function simByEuler Mu: 0 Sigma: 0.3

`bm`

objects display the parameter `A`

as
the more familiar `Mu`

.

The `bm`

object also provides an overloaded Euler simulation method that
improves run-time performance in certain common situations. This specialized method
is invoked automatically only if *all* the following conditions
are met:

The expected drift, or trend, rate

`Mu`

is a column vector.The volatility rate,

`Sigma`

, is a matrix.No end-of-period adjustments and/or processes are made.

If specified, the random noise process

`Z`

is a three-dimensional array.If

`Z`

is unspecified, the assumed Gaussian correlation structure is a double matrix.

The Constant Elasticity of Variance (CEV) model (`cev`

) also derives directly from the
linear drift (`sdeld`

) model:

$$d{X}_{t}=\mu (t){X}_{t}dt+D(t,{X}_{t}^{\alpha (t)})V(t)d{W}_{t}$$

The `cev`

object constrains *A* to an
`NVARS`

-by-`1`

vector of zeros.
*D* is a diagonal matrix whose elements are the corresponding
element of the state vector *X*, raised to an exponent
*α*(*t*).

Create a univariate `cev`

object to represent the model using `cev`

:

$$d{X}_{t}=0.25{X}_{t}+0.3{X}_{t}^{\frac{1}{2}}d{W}_{t}.$$

`obj = cev(0.25, 0.5, 0.3) % (B = Return, Alpha, Sigma)`

obj = Class CEV: Constant Elasticity of Variance ------------------------------------------ Dimensions: State = 1, Brownian = 1 ------------------------------------------ StartTime: 0 StartState: 1 Correlation: 1 Drift: drift rate function F(t,X(t)) Diffusion: diffusion rate function G(t,X(t)) Simulation: simulation method/function simByEuler Return: 0.25 Alpha: 0.5 Sigma: 0.3

`cev`

and `gbm`

objects display the parameter
`B`

as the more familiar `Return`

.

The Geometric Brownian Motion (GBM) model (`gbm`

) derives directly from the CEV (`cev`

) model:

$$d{X}_{t}=\mu (t){X}_{t}dt+D(t,{X}_{t})V(t)d{W}_{t}$$

Compared to the `cev`

object, a `gbm`

object constrains all elements of the *alpha*
exponent vector to one such that *D* is now a diagonal matrix with
the state vector *X* along the main diagonal.

The `gbm`

object also provides two simulation methods that can be used by
separable models:

An overloaded Euler simulation method that improves run-time performance in certain common situations. This specialized method is invoked automatically only if

*all*the following conditions are true:The expected rate of return (

`Return`

) is a diagonal matrix.The volatility rate (

`Sigma`

) is a matrix.No end-of-period adjustments/processes are made.

If specified, the random noise process

`Z`

is a three-dimensional array.If

`Z`

is unspecified, the assumed Gaussian correlation structure is a double matrix.

An approximate analytic solution (

`simBySolution`

) obtained by applying a Euler approach to the transformed (using Ito's formula) logarithmic process. In general, this is*not*the exact solution to this GBM model, as the probability distributions of the simulated and true state vectors are identical*only*for piecewise constant parameters. If the model parameters are piecewise constant over each observation period, the state vector*X*is lognormally distributed and the simulated process is exact for the observation times at which_{t}*X*is sampled._{t}

Create a univariate `gbm`

object to represent the model using `gbm`

:

$$d{X}_{t}=0.25{X}_{t}dt+0.3{X}_{t}d{W}_{t}$$

`obj = gbm(0.25, 0.3) % (B = Return, Sigma)`

obj = Class GBM: Generalized Geometric Brownian Motion ------------------------------------------------ Dimensions: State = 1, Brownian = 1 ------------------------------------------------ StartTime: 0 StartState: 1 Correlation: 1 Drift: drift rate function F(t,X(t)) Diffusion: diffusion rate function G(t,X(t)) Simulation: simulation method/function simByEuler Return: 0.25 Sigma: 0.3

The `sdemrd`

object derives directly from the `sdeddo`

object. It provides an
interface in which the drift-rate function is expressed in mean-reverting drift
form:

$$d{X}_{t}=S(t)[L(t)-{X}_{t}]dt+D(t,{X}_{t}^{\alpha (t)})V(t)d{W}_{t}$$

`sdemrd`

objects provide a parametric alternative to the linear drift
form by reparameterizing the general linear drift such that:

$$A(t)=S(t)L(t),B(t)=-S(t)$$

Create an `sdemrd`

object using `sdemrd`

with a square root
exponent to represent the model:

$$d{X}_{t}=0.2(0.1-{X}_{t})dt+0.05{X}_{t}^{\frac{1}{2}}d{W}_{t}.$$

obj = sdemrd(0.2, 0.1, 0.5, 0.05)

obj = Class SDEMRD: SDE with Mean-Reverting Drift ------------------------------------------- Dimensions: State = 1, Brownian = 1 ------------------------------------------- StartTime: 0 StartState: 1 Correlation: 1 Drift: drift rate function F(t,X(t)) Diffusion: diffusion rate function G(t,X(t)) Simulation: simulation method/function simByEuler Alpha: 0.5 Sigma: 0.05 Level: 0.1 Speed: 0.2

` % (Speed, Level, Alpha, Sigma)`

`sdemrd`

objects display the familiar `Speed`

and `Level`

parameters
instead of `A`

and `B`

.

The Cox-Ingersoll-Ross (CIR) short rate object, `cir`

, derives directly from the SDE
with mean-reverting drift (`sdemrd`

) class:

$$d{X}_{t}=S(t)[L(t)-{X}_{t}]dt+D(t,{X}_{t}^{\frac{1}{2}})V(t)d{W}_{t}$$

where *D* is a diagonal matrix whose elements
are the square root of the corresponding element of the state vector.

Create a `cir`

object using `cir`

to represent the same model
as in Example: SDEMRD Models:

`obj = cir(0.2, 0.1, 0.05) % (Speed, Level, Sigma)`

obj = Class CIR: Cox-Ingersoll-Ross ---------------------------------------- Dimensions: State = 1, Brownian = 1 ---------------------------------------- StartTime: 0 StartState: 1 Correlation: 1 Drift: drift rate function F(t,X(t)) Diffusion: diffusion rate function G(t,X(t)) Simulation: simulation method/function simByEuler Sigma: 0.05 Level: 0.1 Speed: 0.2

Although the last two objects are of different classes, they represent the same mathematical
model. They differ in that you create the `cir`

object by specifying only
three input arguments. This distinction is reinforced by the fact that the
`Alpha`

parameter does not display – it is defined to be
`1/2`

.

The Hull-White/Vasicek (HWV) short rate object, `hwv`

, derives directly from SDE with
mean-reverting drift (`sdemrd`

) class:

$$d{X}_{t}=S(t)[L(t)-{X}_{t}]dt+V(t)d{W}_{t}$$

Using the same parameters as in the previous example, create an `hwv`

object
using `hwv`

to represent the model:

$$d{X}_{t}=0.2(0.1-{X}_{t})dt+0.05d{W}_{t}.$$

`obj = hwv(0.2, 0.1, 0.05) % (Speed, Level, Sigma)`

obj = Class HWV: Hull-White/Vasicek ---------------------------------------- Dimensions: State = 1, Brownian = 1 ---------------------------------------- StartTime: 0 StartState: 1 Correlation: 1 Drift: drift rate function F(t,X(t)) Diffusion: diffusion rate function G(t,X(t)) Simulation: simulation method/function simByEuler Sigma: 0.05 Level: 0.1 Speed: 0.2

`cir`

and `hwv`

share the same interface and
display methods. The only distinction is that `cir`

and `hwv`

model objects constrain
`Alpha`

exponents to `1/2`

and
`0`

, respectively. Furthermore, the `hwv`

object also provides an
additional method that simulates approximate analytic solutions (`simBySolution`

) of separable
models. This method simulates the state vector
*X _{t}* using an approximation of
the closed-form solution of diagonal drift

`HWV`

models. Each
element of the state vector `NBROWNS`

correlated Gaussian random
draws added to a deterministic time-variable drift. When evaluating expressions, all model parameters are assumed
piecewise constant over each simulation period. In general, this is *not* the
exact solution to this `hwv`

model, because the probability
distributions of the simulated and true state vectors are identical *only* for
piecewise constant parameters. If *S(t,X _{t})*,

Many references differentiate between Vasicek models and Hull-White models. Where such
distinctions are made, Vasicek parameters are constrained to be constants, while
Hull-White parameters vary deterministically with time. Think of Vasicek models
in this context as constant-coefficient Hull-White models and equivalently,
Hull-White models as time-varying Vasicek models. However, from an architectural
perspective, the distinction between static and dynamic parameters is trivial.
Since both models share the same general parametric specification as previously
described, a single `hwv`

object encompasses the
models.

The Heston (`heston`

) object derives directly from
SDE from the Drift and Diffusion (`sdeddo`

) class. Each Heston model is a
bivariate composite model, consisting of two coupled univariate models:

$$d{X}_{1t}=B(t){X}_{1t}dt+\sqrt{{X}_{2t}}{X}_{1t}d{W}_{1t}$$ | (1) |

$$d{X}_{2t}=S(t)[L(t)-{X}_{2t}]dt+V(t)\sqrt{{X}_{2t}}d{W}_{2t}$$ | (2) |

`heston`

are typically used to price
equity options.Create a `heston`

object using `heston`

to represent the model:

$$\begin{array}{l}d{X}_{1t}=0.1{X}_{1t}dt+\sqrt{{X}_{2t}}{X}_{1t}d{W}_{1t}\\ d{X}_{2t}=0.2[0.1-{X}_{2t}]dt+0.05\sqrt{{X}_{2t}}d{W}_{2t}\end{array}$$

obj = heston (0.1, 0.2, 0.1, 0.05)

obj = Class HESTON: Heston Bivariate Stochastic Volatility ---------------------------------------------------- Dimensions: State = 2, Brownian = 2 ---------------------------------------------------- StartTime: 0 StartState: 1 (2x1 double array) Correlation: 2x2 diagonal double array Drift: drift rate function F(t,X(t)) Diffusion: diffusion rate function G(t,X(t)) Simulation: simulation method/function simByEuler Return: 0.1 Speed: 0.2 Level: 0.1 Volatility: 0.05

`bm`

| `cev`

| `cir`

| `diffusion`

| `drift`

| `gbm`

| `heston`

| `hwv`

| `interpolate`

| `sde`

| `sdeddo`

| `sdeld`

| `sdemrd`

| `simByEuler`

| `simBySolution`

| `simBySolution`

| `simulate`

| `ts2func`