# Windows

Hamming, Blackman, Bartlett, Chebyshev, Taylor, Kaiser

Design, visualize, and implement window functions. Compare mainlobe widths and sidelobe levels of windows as a function of their size and other parameters.

## Apps

 Window Designer Design and analyze spectral windows

## Functions

expand all

 `barthannwin` Modified Bartlett-Hann window `bartlett` Bartlett window `blackman` Blackman window `blackmanharris` Minimum four-term Blackman-Harris window `bohmanwin` Bohman window `chebwin` Chebyshev window `enbw` Equivalent noise bandwidth `flattopwin` Flat top weighted window `gausswin` Gaussian window `hamming` Hamming window `hann` Hann (Hanning) window `kaiser` Kaiser window `nuttallwin` Nuttall-defined minimum 4-term Blackman-Harris window `parzenwin` Parzen (de la Vallée Poussin) window `rectwin` Rectangular window `taylorwin` Taylor window `triang` Triangular window `tukeywin` Tukey (tapered cosine) window
 `dpss` Discrete prolate spheroidal (Slepian) sequences `dpssclear` Remove discrete prolate spheroidal sequences from database `dpssdir` Discrete prolate spheroidal sequences database directory `dpssload` Load discrete prolate spheroidal sequences from database `dpsssave` Discrete prolate spheroidal or Slepian sequence database

## Window Visualization Tool

 WVTool Open Window Visualization Tool

## Topics

• Get Started with Window Designer

Use the Window Designer app to design and analyze spectral windows.

• Windows

Learn about spectral windows and how to analyze them using toolbox functions.

• Generalized Cosine Windows

Blackman, flat top, Hamming, Hann, and rectangular windows are all special cases of the generalized cosine window.

• Kaiser Window

The Kaiser window is designed to maximize the ratio of mainlobe energy to sidelobe energy.

• Chebyshev Window

The Chebyshev window minimizes the mainlobe width for a particular sidelobe level and exhibits equiripple sidelobe behavior.