This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Normal Distribution

Definition

The normal pdf is

y=f(x|μ,σ)=1σ2πe(xμ)22σ2.

Background

The normal distribution is a two-parameter family of curves. The first parameter, µ, is the mean. The second, σ, is the standard deviation. The standard normal distribution (written Φ(x)) sets µ to 0 and σ to 1.

Φ(x) is functionally related to the error function, erf.

erf(x)=2Φ(x2)1

The first use of the normal distribution was as a continuous approximation to the binomial.

The usual justification for using the normal distribution for modeling is the Central Limit Theorem, which states (roughly) that the sum of independent samples from any distribution with finite mean and variance converges to the normal distribution as the sample size goes to infinity.

Parameters

To use statistical parameters such as mean and standard deviation reliably, you need to have a good estimator for them. The maximum likelihood estimates (MLEs) provide one such estimator. However, an MLE might be biased, which means that its expected value of the parameter might not equal the parameter being estimated. For example, an MLE is biased for estimating the variance of a normal distribution. An unbiased estimator that is commonly used to estimate the parameters of the normal distribution is the minimum variance unbiased estimator (MVUE). The MVUE has the minimum variance of all unbiased estimators of a parameter.

The MVUEs of parameters µ and σ2 for the normal distribution are the sample mean and variance. The sample mean is also the MLE for µ. The following are two common formulas for the variance.

s2=1ni=1n(xix¯)2(1)
s2=1n1i=1n(xix¯)2(2)

where

x¯=i=1nxin

Equation 1 is the maximum likelihood estimator for σ2, and equation 2 is the MVUE.

To fit the normal distribution to data and find the parameter estimates, use normfit, fitdist, or mle.

  • For uncensored data, normfit and fitdist find the unbiased estimates of the distribution parameters, and mle finds the maximum likelihood estimates.

  • For censored data, normfit, fitdist, and mle find the maximum likelihood estimates.

Unlike normfit and mle, which return parameter estimates, fitdist returns the fitted probability distribution object NormalDistribution. The object properties mu and sigma of store the parameter estimates.

As an example, suppose you want to estimate the mean, µ, and the variance, σ2, of the heights of all fourth grade children in the United States. The function normfit returns the MVUE for µ, the square root of the MVUE for σ2, and confidence intervals for µ and σ2. Here is a playful example modeling the heights in inches of a randomly chosen fourth grade class.

rng default;  % For reproducibility
height = normrnd(50,2,30,1);  % Simulate heights
[mu,s,muci,sci] = normfit(height)
mu = 51.1038
s = 2.6001
muci = 2×1

   50.1329
   52.0747

sci = 2×1

    2.0707
    3.4954

Note that s^2 is the MVUE of the variance.

s^2
ans = 6.7605

Examples

Compute and Plot the Normal Distribution pdf

Compute the pdf of a standard normal distribution, with parameters equal to 0 and equal to 1.

x = [-3:.1:3];
norm = normpdf(x,0,1);

Plot the pdf.

figure;
plot(x,norm)

See Also

Related Examples

More About