5G Wireless Technology Development

Why Use MATLAB and Simulink for 5G?

Leading wireless engineering teams use MATLAB® and Simulink® to develop 5G new radio access technologies, including flexible physical layer architectures, massive MIMO antenna arrays, and highly integrated RF transceivers. They use MATLAB to:

  • Create and optimize IP for 5G products
  • Simulate the impact of algorithm, RF, and antenna design choices on system performance
  • Ensure designs are standard-compliant
  • Verify the behavior of designs with hardware prototypes and over-the-air tests
  • Share models and code across development teams

How MATLAB and Simulink Accelerate 5G Development Tasks

End-to-end link simulation

Develop and optimize your 5G physical layer design using standard-compliant models. Evaluate the impact of algorithm and array design choices, RF impairments, and sub-6GHz and mmWave propogation channels.

Figure 1. Evaluate the performance impact of 5G algorithm design with end-to-end simulation.

5G-compliant waveform generation and testing

Generate 5G-compliant waveforms and automate testing of simulations and over the air transmissions. Use RF instruments and software-defined radio hardware to transmit 5G waveforms and capture live RF signals. Analyze and visualize simulation, laboratory, and field test results.  

Figure 2. Time-frequency visualization of a 5G-compliant downlink waveform.

RF system engineering for mmWave and massive MIMO

5G operation at mmWave frequencies requires new hybrid radio architectures to overcome higher propagation losses and channel impairments. Use MATLAB and Simulink to jointly model and simulate the digital, RF, and antenna subsystems, including wideband power amplifiers, massive MIMO antenna arrays, and adaptive algorithms. Multidomain simulation enables more thorough design validation before testing in the hardware lab or field trials. Component engineers can share models and collaborate more easily using a single tool.  

Figure 3. Beam pattern for a massive MIMO antenna array. 

Model-Based Design for prototyping and verification

Using Model-Based Design with MATLAB and Simulink enables system modeling and development workflows to accelerate 5G hardware and software implementation. You can make design changes at a high level and automatically generate code and testbenches.

Model-Based Design enables you to experiment with different architectures and algorithms, iteratively adjust parameters, predict hardware performance, and automate prototyping on SDRs and other FPGA or SoC hardware.

Figure 4. Model-Based Design for 5G system development with MATLAB and Simulink.

How Are MathWorks Customers Developing These Technologies?

Huawei

“MATLAB and Simulink provide a unified and efficient system development platform to bridge between analog and digital; software and hardware; and algorithm, implementation, and verification.

Erni Zhu, Huawei

Convida Wireless

“MATLAB made it easy for us to prototype 5G features because we could start with validated transmitter functions, customize them with our own enhancements, and rapidly produce a prototype for simulation."

Allan Yingming Tsai, Convida Wireless

Get a Free Trial

Contact us to request a free trial of 5G Toolbox.